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Parallelizing Exact and Approximate String
Matching via Inclusive Scan on a GPU

Yasuaki Mitani, Fumihiko Ino, Member, IEEE, and Kenichi Hagihara

Abstract—In this study, to substantially improve the runtimes of exact and approximate string matching algorithms, we propose a
tribrid parallel method for bit-parallel algorithms such as the Shift-Or and Wu-Manber algorithms. Our underlying idea is to interpret
bit-parallel algorithms as inclusive-scan operations, which allow these bit-parallel algorithms to run efficiently on a graphics processing
unit (GPU); we achieve this speed-up here because inclusive-scan operations not only eliminate duplicate searches between threads
but also realize a GPU-friendly memory access pattern that maximizes memory read/write throughput. To realize our ideas, we first
define two binary operators and then present a proof regarding the associativity of these operators, which is necessary for the
parallelization of the inclusive-scan operations. Finally, we integrate the inclusive-scan scheme into a previous segmentation-based
scheme to maximize search throughput, identifying the best tradeoff point between synchronization cost and duplicate work. Through
our experiments, we compared our proposed method with previous segmentation-based methods and indexing-based sequence
aligners. For online string matching, our proposed method performed 6.7–16.7 times faster than previous methods, achieving a search
throughput of up to 1.88 terabits per second (Tbps) on a GeForce GTX TITAN X GPU. We therefore conclude that our proposed
method is quite effective for decreasing the runtimes of online string matching of short patterns.

Index Terms—String matching, bit-parallel algorithm, inclusive scan, Shift-Or algorithm, Wu-Manber algorithm, GPU.
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1 INTRODUCTION

THE problem of string matching is to find all locations
at which pattern P of length m matches a substring of

text, with T being of length n. Exact string matching finds
all occurrences, if any, of pattern P in text T . Conversely,
approximate string matching finds all strings whose edit
distance from P is smaller than error k, i.e., the tolerable
maximum edit distance. String matching is a fundamental
problem that occurs in a wide range of practical appli-
cations, including computational biology [1], information
retrieval [2], and network intrusion detection [3].

String matching algorithms have been intensively stud-
ied for over 40 years using several approaches, including
dynamic programming, automata, bit parallelism, filtering,
and indexing approaches [4]. Among these, automata-based
algorithms have the best worst-case time, i.e., O(n) or linear
time, which is therefore the lower bound of this irregular
problem [4]. These automata-based algorithms can be fur-
ther classified into two groups according to their underlying
automata, namely, deterministic finite automata (DFAs) or
nondeterministic finite automata (NFAs). For DFAs, the
Knuth-Morris-Pratt [5] and Aho-Corasick [6] algorithms
have been widely used for exact string matching problems.

With respect to NFAs, a variety of bit-parallel approaches
have been used in practice as fast algorithms for exact and
approximate string matching problems [7]–[9]. In [7], [8],
Baeza-Yates and Gonnet proposed the Shift-Or (SO) algo-
rithm, which finds exact matching positions in O(nm/w)
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time, where w is the size of a computer word. Although
this complexity is not optimal, the SO algorithm is usually
fast in practice, particularly for relatively short patterns
that fit into a computer word (i.e., m ≤ w); this inherent
speed exists because the algorithm takes advantage of the
intrinsic parallelism of bit operations inside a computer
word. Exploiting this bit parallelism reduces the number of
operations by a factor of up to w. The SO algorithm also
has advantages in terms of data locality because its simple
data structure regularizes memory access patterns. In [9],
Wu and Manber extended this SO algorithm to solve the
approximate string matching problem in O(nm/wk) time.

In addition to bit parallelism, other data-parallel meth-
ods have been presented to achieve further acceleration
on multicore CPUs [10], graphics processing units (GPUs)
[11], and Xeon Phi coprocessors [12]. These hybrid meth-
ods exploit both bit parallelism and data parallelism by
partitioning the text into smaller segments, which are then
processed in parallel by running a bit-parallel algorithm
for each segment. For example, GBPR [11] deployed this
hybrid approach to realize a high search throughput of
approximately 75 gigabits per second (Gbps) on a GeForce
GTX 680 GPU, which was seven to 11 times faster than
that of a multithreaded CPU implementation. Here search
throughput ρ is given by ρ = n/t, where t is the GPU
execution time spent for the search.

Nonetheless, using a segmentation-based scheme can
result in a degradation of efficiency on a massively parallel
machine because halo regions of size m − 1 are required to
correctly find a match ending at the head of a segment,
as depicted in Fig. 1a. These halo regions add substantial
overhead because the characters within the halo region must
be read twice, i.e., once for each of the adjacent segments.
Given this duplicate searching, using a segmentation-based
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Fig. 1: Parallel string search using (a) a segmentation-based
scheme and (b) an inclusive-scan scheme. The former pro-
cesses a sequential search algorithm for each segment of
size s; thus halo regions of size m − 1 are required to
find a potential match ending prematurely at the head of
a segment. In contrast, the latter eliminates halo regions but
requires global synchronization to obtain the entire scan.

scheme results in lower efficiency with strong scaling, where
an increasing number of processing elements (i.e., segments)
are applied to a fixed-size problem (i.e., text). Furthermore,
parallel threads suffer from strided memory accesses when
they simultaneously access different segments. Thus, the
challenge of realizing a highly efficient solution remains
for increasing the runtimes of bit-parallel algorithms on a
massively parallel machine; more specifically, we need a
low-cost emerging accelerator capable of exploiting fine-
grained parallelism with millions of threads.

A prospective approach for eliminating halo regions
is to interpret bit-parallel algorithms with scan primitives
[13], which have been used to parallelize many key op-
erations that seem inherently sequential [14], including
sorting, stream compaction, and histogram computation.
With respect to string comparison, Khajeh-Saeed et al. [15]
presented an inclusive-scan-based approach for the Smith-
Waterman algorithm [16], which can be regarded as a gen-
eral form of the Wu-Manber (WM) algorithm [9] mentioned
above; the Smith-Waterman algorithm computes the simi-
larity scores of arbitrary regions of two strings according
to a flexible scoring system (i.e., substitution matrix and
gap penalties). Thus, scan operations can be efficiently com-
puted on the GPU [14], [17] because this type of computa-
tion has high locality and regularity in terms of memory
references. However, as far as we know, scan primitives
have not been applied to bit-parallel algorithms, which
have different computing strategies and data structures as
compared to the Smith-Waterman algorithm.

In this paper, we therefore propose a tribrid parallel
method that takes advantages of scan-based paralleliza-
tion, segmentation-based parallelization, and bit-level par-
allelization. The scan scheme allows massively parallel
threads to run the SO algorithm [7], [8] to find matching
patterns without halo regions, as depicted in Fig. 1b; more
specifically, a string matching problem can be interpreted as
an inclusive-scan problem according to Blelloch’s reduction
[18]. To enable this interpretation, we find a companion
operator [18] to rewrite the SO algorithm with a recurrence
relation based on associative operators. This associativity
allows the SO algorithm to be parallelized in the same
manner as that of the parallel scan algorithm [19]. Thus, the

automata can be correctly updated by reading characters
at arbitrary positions of the text, meaning that there is no
need to serially read characters from the head of a text
segment. Because the inclusive-scan scheme requires global
synchronization of threads, this scheme is cascaded with a
segmentation-based scheme, which avoids synchronization,
but requires halo regions. We also show that scan-based
parallelization can be applied to the WM algorithm for
approximate string matching. We implemented our pro-
posed methods on a GPU compatible with the compute
unified device architecture (CUDA) [20]. The developed
implementation, which we called cuShiftOr, is available at
http://www-hagi.ist.osaka-u.ac.jp/research/code/.

In addition to this introduction, the remainder of this
paper is structured as follows. In Section 2, we introduce
related studies regarding approaches to improving the run-
times of various string matching algorithms. In Section 3, we
present an overview of bit-parallel algorithms, which forms
the basis of our proposed method. In Section 4, we describe
our proposed methods for exact and approximate string
matching. Next, in Section 5, we present key implemen-
tation issues that must be solved to achieve CUDA-based
acceleration. In Section 6, we show our experimental results
obtained using the Maxwell GPU [21]. Finally, in Section 7,
we conclude our paper and discuss avenues of future work.

2 RELATED WORK

Several parallel implementations for accelerating bit-
parallel algorithms on a GPU have been presented, some
of which are detailed below. Previous methods typically
parallelize a string search algorithm via a segmentation-
based scheme. By contrast, cuShiftOr focuses on the as-
sociativity of search operations, which enables text to be
read in an arbitrary order without halo regions. As such,
cuShiftOr achieves an efficient memory access pattern for
this irregular problem, yielding Tbps speeds for in-core
search throughput of short patterns of up to 64 characters.

Lin et al. presented GBPR [11], which deploys a
segmentation-based scheme to exploit data parallelism of
the WM algorithm with optimization to the hierarchical
memory architecture of the GPU. Given segment size s,
text of length n is divided into ⌈n/s⌉ overlapping segments
to allow ⌈n/s⌉ threads to independently run the sequential
WM algorithm for their responsible segments. Furthermore,
GBPR reduces the amount of off-chip memory access by uti-
lizing on-chip shared memory [20] as a software-managed
cache. The achieved search throughput of 75 Gbps was
2.8–104.8 times that of various state-of-the-art approaches
[22]–[25]. However, this throughput can be increased if s-
strided accesses from a warp [20] can be coalesced into a
single access to a contiguous memory region. Here, a warp
is a collection of 32 GPU threads that execute the same
instruction at every clock cycle.

In [26], Tran et al. presented XBitPar, which allows a
GPU to process the WM algorithm with a long pattern of
up to 1024 characters. Their basic idea was to simulate a
long computer word by letting each thread within a warp
take a 32-bit word as an operand. This simulation is useful
for dealing with long patterns, such as biological sequences,
which usually cannot fit into a 32-bit computer word. By
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contrast, our proposed method, which deploys a 32/64-
bit word, can be faster if a 1024-bit word is wasteful for
the input pattern. This waste issue is not critical for mul-
tipattern matching problems because the automata states
for multiple patterns can easily be packed into a computer
word. Further, in [10], Kusudo et al. accelerated the SO
algorithm for multipattern matching on a multicore CPU.
Their implementation utilized advanced vector extensions
(AVX) [27], which is an instruction set for single-instruction,
multiple-data (SIMD) processing. In [24] and [28], similar
approaches were implemented on a GPU. Given these previ-
ous studies, we conclude that scan-based parallelization can
be applied to the family of bit-parallel algorithms designed
for multipattern matching problems.

Similar to the WM algorithm, Baeza-Yates et al. [29]
realized approximate string matching by packing automa-
ton states in a different manner. The difference here was
that they packed the automaton states along the diagonals
instead of along the rows or columns, thereby achieving
O(n) search for short patterns, i.e., mk = O(w). Their
algorithm was implemented on an NVIDIA Tesla S1070
GPU by Onsjö et al. [25], who achieved a search throughput
of 158 Mbps. Similar to XBitPar [26], they realized a solution
that supported a long computer word via the warp-based
search technique described above.

Dynamic programming has also been applied to string
search problems. Using dynamic programming, a matrix
called the dynamic programming matrix must be filled
to find matching positions, with new values within the
matrix building upon previous values of the matrix. In [30],
Myers efficiently parallelized the computation of the dy-
namic programming matrix by considering the differences
along columns instead of the values within the columns.
He exploited bit parallelism in the matrix computation,
achieving a runtime of O(nm/w) for arbitrary k. Given
its time complexity is independent of k here, the Myers
algorithm is suitable for approximate string matching,

In [31], Langner parallelized the Myers algorithm using
a GPU by simultaneously processing matrix elements on the
same antidiagonal. Although this parallelization scheme is
efficient for large n and m, efficiency degrades for short pat-
terns because the degree of parallelism is limited to at most
min(n,m/w) elements located on the same antidiagonal. A
similar GPU-based dynamic programming implementation
was presented by Man et al. [32], who achieved a search
throughput of 80 Mbps on an NVIDIA GeForce GTX 580.

Lin et al. [33] parallelized the Aho-Corasick algorithm
[6] on a GPU. Their implementation, called the parallel
failureless Aho-Corasick (PFAC) algorithm, modifies the
DFA to reduce the number of necessary warp divergences
[20], which significantly decreases the efficiency of SIMD
execution. A search throughput of up to 143 Gbps was
achieved on a GeForce GTX 580 for 1998 exact patterns.
This throughput was 14.7 times faster than that of an
OpenMP-based CPU implementation; however, the PFAC
algorithm suffers from load imbalance issues if too many
partial matches are found during searching, as is evident
by throughputs ranging from 11.0–218.7 Gbps. By contrast,
bit-parallel algorithms avoid such load imbalance issues,
opening the door to stable search throughputs regardless
of the number of partial matches.
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Fig. 2: NFA examples used for bit-parallel algorithms. Given
pattern ATAG, the SO algorithm [7], [8] generates (a) an
NFA to be used for exact string matching, while (b) the
WM algorithm [9] extends the NFA to perform approximate
string matching with at most k errors (in this example,
k = 2). Note that unlabeled transitions match any arbitrary
character.

Finally, an important application category of string
matching is biological sequence alignment. Many exact and
approximate algorithms [34]–[38] have been proposed with
indexing architectures. For short patterns, indexing-based
approaches are usually computationally efficient versus in-
dexless (i.e., brute-force) approaches; however, indexing-
based approaches assume offline searching and require
extra memory space to maintain indexes. We compare
cuShiftOr with state-of-the-art aligners [34]–[38] later in
Section 6.4.

3 PRELIMINARIES: BIT-PARALLEL ALGORITHMS

In the following subsections, we use a C-like notation for
bitwise operators, i.e., let ≪, &, |, and ∼ be the left shift,
AND, OR, and NOT operators, respectively. Further, let Z
and F be the sets of non-negative integers and a binary
finite field, respectively. Also, let Fw be the set of binary
bit-vectors of size w.

3.1 Shift-Or Algorithm for Exact Matching

In this subsection, we describe the SO algorithm for ex-
act string matching. Let Σ be an alphabet of characters.
Let T = t1t2 · · · tn be the text of length n ∈ Z and let
P = p1p2 · · · pm be the pattern of length m ∈ Z, where
ti ∈ Σ (1 ≤ i ≤ n) and pj ∈ Σ (1 ≤ j ≤ m) are the i-th
and j-th characters of the text and pattern, respectively. The
SO algorithm [7], [8] accelerates string matching by running
m string comparators in parallel, each reading the same text
position concurrently but with a different starting position.
Each comparator simulates an NFA to express a matching
state; the current state of the NFA is updated by reading
a character from the text. Figure 2a shows an example of
the NFA generated for pattern ATAG. As shown in the
figure, state ri indicates that the first i characters of the
pattern exactly match the last i characters of the text, where
1 ≤ i ≤ m. Consequently, an exact match ending at tj can be
detected if the NFA reaches accepting state rm after reading
tj , where 1 ≤ j ≤ n.

Bit parallelism can be exploited here by packing the
current states of m NFAs into bit-vector R ∈ Fm of size m
such that R contains information on all matches of prefixes
of pattern P . Let Rj ∈ Fm be the value of bit-vector
R after tj has been read. Rj is defined as Rj [i] = 0 if
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p1p2 · · · pi = tj−i+1tj−i+2 · · · tj ; otherwise, Rj [i] = 1. Bit-
vector Rj can then be computed according to a first-order
recurrence relation

Rj =

{
1m, if j = 0,

(Rj−1≪1) |Mj , if j < 0 ≤ n,
(1)

where 1m is an all-one vector of size m and Mj ∈ Fm is a
bit-vector that depends on tj : for all 1 ≤ i ≤ m, Mj [i] = 0,
if tj = pi; otherwise, Mj [i] = 1. In other words, Mj is a
mask that can be stored in a table indexed by alphabet Σ.
The SO algorithm can be rapidly processed if a bit-vector
fits within a computer word (i.e., m ≤ w).

3.2 Wu-Manber Algorithm for Approximate Matching

The basic idea behind the WM algorithm for approximate
string matching is to extend the NFA of the SO algorithm
to allow transitions between states associated with error
distance d (0 ≤ d ≤ k). Let rd,i be the state in which the
first i characters of the pattern match the last i characters
of the text with d errors. In this way, the extended NFA
considers all possible matches with up to k errors. Figure 2b
illustrates an NFA example for pattern ATAG with k = 2.

Similar to the SO algorithm, the WM algorithm [9]
exploits bit parallelism by packing the current states of m
NFAs, i.e., bit-vector R ∈ Fm of size m contains information
on all matches of prefixes of pattern P with up to k errors.
Let Rd,j ∈ Fm be the value of the bit-vector after tj has
been read. For approximate matching, we must consider
transitions not only with matches but also from insertions,
deletions, or substitutions, which we express as

Rd,j =



1m, if d = 0, j = 0,

(Rd,j−1≪1) |Mj , if d = 0, 0 < j ≤ n,

1m−d0d, if 0 < d ≤ k, j = 0,

((Rd,j−1≪1) |Mj)

& Rd−1,j−1

& (Rd−1,j−1≪1)

& (Rd−1,j≪1), if 0 < d ≤ k, 0 < j ≤ n.

(2)

3.3 Properties of Fundamental Operators

To facilitate the understanding of our proposed method, we
describe properties of fundamental bitwise operations via
the lemmas below.

Lemma 1. The bitwise left shift operator ≪: Fw × Z → Fw

satisfies (x ≪ u) ≪ v = x ≪ (u + v), where x ∈ Fw is a
bit-vector of size w and u, v ∈ Z are non-negative integers.

Lemma 2. The bitwise OR operator |: Fw × Fw → Fw is
associative.

Lemma 3. ≪ is right-distributive over |.

The proofs of the above lemmas are presented
in the supplementary material, which can be
found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.xxxx.xx.

4 PROPOSED PARALLEL METHOD

The fundamental goal of our proposed method is to intro-
duce associative binary operator • to translate Eqs. (1) and
(2) into recurrence relation

Rj =

{
a0, if j = 0,

Rj−1 • aj , if j > 0.
(3)

To achieve this, we find a companion operator [18] for Eq. (1)
and show a proof based on Blelloch’s reduction [18]; by
using the companion operator, a first-order recurrence with
a semiassociative operator [18] and an associative operator
can be reduced into Eq. (3). We also extend this idea for
Eq. (2), i.e., a recurrence with three different operators,
≪, |, and &, by defining an associative operator and a
semiassociative operator required for Blelloch’s reduction.

4.1 Exact Matching
For exact string matching problems, we introduce bitwise
operator † as the key operator •.

Definition 1. Bitwise operator † : (Z × Fw) × (Z × Fw) →
Z× Fw for pairs of a non-negative integer and a bit-vector of size
w is defined as

⟨u1,x1⟩ † ⟨u2,x2⟩
def
= ⟨u1+u2, (x1≪u2) | x2⟩, (4)

where u1, u2 ∈ Z and x1,x2 ∈ Fw. The operator + here is the
companion operator of the semiassociative operator≪.

Using associative operator †, an exact string matching
problem can be solved as an inclusive-scan problem. Algo-
rithm 1 shows our proposed method for exact matching,
where we use

∑j
l=0 Al to denote a summation over †:∑j

l=0 Al = A0 †A1 †· · ·†Aj , where A0, A1, . . . , Al ∈ Z×Fm.
The basic idea behind operator † is that it pairs up a mask
with an integer to correctly compute accumulated mask
Rj ∈ Z× Fm, thus accumulated mask Rj from Algorithm 1
considers all possible states that can be reached after Tj has
been read. Consequently, the bit-vector can be updated by
an inclusive-scan scheme as presented in lines 4–6 of Algo-
rithm 1. Note that this algorithm assumes m ≤ 64 (= w) to
achieve acceleration on a GPU.

Algorithm 1 SO exact matching with parallel inclusive-scan

Input: Text T of n characters and pattern P of m characters
Output: Bit sequence X of size n that indicates matching

positions

1: Initialize the masks M1,M2, · · · ,Mn according to T
and P

2: A0 ← ⟨0, 1m⟩
3: Aj ← ⟨1,Mj⟩, for all 1 ≤ j ≤ n
4: for j ← 0 to n do in parallel ▷ Parallel inclusive-scan
5: Rj ←

∑j
l=0 Al ▷ Summation over †

6: end for
7: ⟨uj ,xj⟩ ← Rj , for all 0 ≤ j ≤ n
8: X[j]← xj [m], for all 1 ≤ j ≤ n
9: return X

Next, we show a proof of the correctness of Algorithm 1.
First, we show that † is an associative operator required for
parallelizing lines 4–6 of Algorithm 1.
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Theorem 1. † is associative.

Proof. The proof here is given by Lemmas 1, 2, and 3. Let
x1,x2,x3 ∈ Fw and u1, u2, u3 ∈ Z. Then,

(⟨u1,x1⟩ † ⟨u2,x2⟩) † ⟨u3,x3⟩
= ⟨u1+u2, (x1≪u2) | x2⟩ † ⟨u3,x3⟩
= ⟨(u1+u2) + u3, (((x1≪u2) | x2)≪ u3) | x3⟩
= ⟨u1+u2+u3, (((x1≪u2)≪ u3) | (x2≪u3)) | x3⟩
= ⟨u1+u2+u3, (x1 ≪ (u2+u3)) | (x2≪u3) | x3⟩. (5)

Conversely,

⟨u1,x1⟩ † (⟨u2,x2⟩ † ⟨u3,x3⟩)
= ⟨u1,x1⟩ † ⟨u2+u3, (x2≪u3) | x3⟩
= ⟨u1 + (u2+u3), (x1 ≪ (u2+u3)) | ((x2≪u3) | x3)⟩
= ⟨u1+u2+u3, (x1 ≪ (u2+u3)) | (x2≪u3) | x3⟩. (6)

Thus, Eq. (5) is equivalent to Eq. (6), and thereby † is
associative.

Next, we show that Algorithm 1 produces the same
results of the SO algorithm.

Theorem 2. Let ⟨u0,x0⟩, ⟨u1,x1⟩, . . . , ⟨un,xn⟩ ∈ Z× Fm be
the inclusive scans of pairs obtained at line 7 of Algorithm 1,
where m ∈ Z. Then, for all 0 ≤ j ≤ n, xj = Rj , where
Rj ∈ Fm is the j-th bit-vector obtained by Eq. (1).

Proof. According to Algorithm 1, j-th inclusive scan
⟨uj ,xj⟩, where 0 ≤ j ≤ n, can be expressed as recurrence
relation

⟨uj ,xj⟩ =
{
⟨0, 1m⟩, if j = 0,

⟨uj ,xj−1⟩ † ⟨1,Mj⟩, if 0 < j ≤ n.
(7)

Conversely, Eq. (4) gives ⟨uj ,xj−1⟩ † ⟨1,Mj⟩ = ⟨uj +
1, (xj−1≪ 1) | Mj⟩, meaning that Eq. (1) is part of Eq. (7);
the second component of the pairs in Eq. (7) is equal to
Eq. (1); hence, xj = Rj , for all 0 ≤ j ≤ n.

4.2 Approximate Matching
We cannot directly apply our exact matching approach to
an approximation problem because Eq. (2) consists of | and
&, which corrupt the associative property. As an example
of this, (1 & 0) | 1 ̸= 1 & (0 | 1). To address this issue,
we introduce three additional bitwise operators≪2, ⊎, and
‡, where ‡ is the target associative operator • constructed
using≪2 and ⊎. These operators are defined below.

Definition 2. Bitwise left shift operator≪2: Gw×Z→ Gw for
pairs of bit vectors, where Gw def

= Fw × Fw, is defined as

⟨x,y⟩ ≪2 u
def
= ⟨x≪ u,y≪ u⟩, (8)

where x,y ∈ Fw and u ∈ Z. The operator ≪2 here is the
semiassociative operator required for Blelloch’s reduction.

Definition 3. Bitwise operator ⊎ : Gw×Gw → Gw is defined as

⟨x1,y1⟩ ⊎ ⟨x2,y2⟩
def
= ⟨x1 |x2, (y1&∼x2) | y2⟩, (9)

where x1,x2,y1,y2 ∈ Fw. The operator ⊎ here is the associative
operator required for Blelloch’s reduction.

Definition 4. Bitwise operator ‡ : (Z × Gw) × (Z × Gw) →
Z×Gw is defined as

⟨u1, ⟨x1,y1⟩⟩ ‡ ⟨u2, ⟨x2,y2⟩⟩
def
=

⟨u1+u2, (⟨x1,y1⟩≪2 u2) ⊎ ⟨x2,y2⟩⟩, (10)

where u1, u2 ∈ Z, and x1,x2,y1,y2 ∈ Fw. The operator + here
is the companion operator of the semiassociative operator≪2.

Using operator ‡, the approximate string matching prob-
lem can be solved via an inclusive-scan scheme, as shown
in Algorithm 2.

Algorithm 2 WM approximate matching with parallel
inclusive-scan
Input: Text T of n characters and pattern P of m characters
Output: Bit sequence Y of size n that indicates approximate

matching positions with at most k errors

1: Initialize the masks M1,M2, · · · ,Mn according to T
and P

2: Compute R0,j , for all 0 ≤ j ≤ n using lines 2–6 of
Algorithm 1

3: ⟨u0,j ,y0,j⟩ ← R0,j , for all 0 ≤ j ≤ n
4: for d← 1 to k do
5: Nj ← yd−1,j−1 & (yd−1,j−1≪ 1) & (yd−1,j ≪ 1),

for all 1 ≤ j ≤ n
6: Ad,0 ← ⟨0, ⟨0m, 1m−d0d⟩⟩
7: Ad,j ← ⟨1, ⟨∼Nj , (Mj&Nj)⟩⟩, for all 1 ≤ j ≤ n
8: for j ← 0 to n do in parallel ▷ Parallel

inclusive-scan
9: Rd,j ←

∑j
l=0 Ad,l ▷ Summation over ‡

10: end for
11: ⟨ud,j , ⟨xd,j ,yd,j⟩⟩ ← Rd,j , for all 0 ≤ j ≤ n
12: end for
13: Y [j]← yk,j [m], for all 1 ≤ j ≤ n
14: return Y

Next, we show a proof of the correctness of Algorithm 2.
Equations (1) and (2) indicate that R0,j , where 0 ≤ j ≤ n,
can be obtained by processing the SO algorithm, i.e., lines 2
and 3 of Algorithm 2 correctly produce exact matching
results for d = 0. Regarding remaining lines 4–12, which
consider cases of 0 < d ≤ k, we show below that Algo-
rithm 2 produces the same results as the WM algorithm.

First, we describe some of the properties of the newly
introduced operators. Note here that the associativity of ‡
can be shown in a similar manner as that of †, because Eq. (4)
for † can be mapped to Eq. (10) for ‡ by substituting≪ and
| for ≪2 and ⊎, respectively. Accordingly, we show some
fundamental properties of≪2 and ⊎ below.

Lemma 4. ≪2 has the property

(⟨x,y⟩ ≪2 u)≪2 v = ⟨x,y⟩ ≪2 (u+ v),

where x,y ∈ Fw and u, v ∈ Z.

Proof. The proof here can easily be shown in the same
manner as that of Lemma 1.

Lemma 5. ⊎ is associative.

Proof. When w = 1, (⟨x1, y1⟩ ⊎ ⟨x2, y2⟩) ⊎ ⟨x3, y3⟩ =
⟨x1, y1⟩⊎(⟨x2, y2⟩⊎⟨x3, y3⟩), for all x1, x2, x3, y1, y2, y3 ∈ F.
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This equivalence can easily be confirmed as presented in the
supplementary material. This associativity also exists when
w > 1 because arbitrary bits of the output vectors can be
computed independently of one another.

Lemma 6. ≪2 is right-distributive over ⊎.

Proof. The proof here can easily be shown in the same
manner as that of Lemma 3.

Second, we show that ‡ is an associative operator, re-
quired for parallelizing lines 8–10 of Algorithm 2.

Theorem 3. ‡ is associative.

Proof. The proof here can be shown in the same manner as
that of Theorem 1 by using Lemmas 4, 5, and 6.

Third, we show that arbitrary inclusive-scans obtained
with &, |, and/or ≪ can be expressed with ⊎ and ≪2

according to a rewrite rule. To facilitate this process, we first
consider the first two operators, & and |.

Theorem 4. Let a0,a1, · · · ,an ∈ Fm be a sequence of n bit-
vectors of size m ∈ Z. Consider inclusive scans of these bit-vectors
summed up with & and/or | as

Rj =

{
a0, if j = 0,

Rj−1 opj aj , if 0 < j ≤ n,
(11)

where opj∈ {&, |} and aj ,Rj ∈ Fm. Next, let ⟨xj ,yj⟩, where
0 ≤ j ≤ n, be a pair of bit-vectors given by recurrence relation

⟨xj ,yj⟩ =
⟨0m,a0⟩, if j = 0,

⟨xj−1,yj−1⟩ ⊎ ⟨0m,aj⟩, if 0 < j ≤ n, opj=|,
⟨xj−1,yj−1⟩ ⊎ ⟨∼aj , 0m⟩, if 0 < j ≤ n, opj=&,

(12)

where xj ,yj ∈ Fm. Then, there is a rewrite rule that maps
Eq. (11) to Eq. (12), i.e., Rj = yj , for all 0 ≤ j ≤ n.

Proof. We show a proof for the case of m = 1 by mathemat-
ical induction on n. When n = 1, the statement obviously
holds. Assume that the statement holds for n = k′ (> 1): for
all 0 ≤ j ≤ k′, Rj = yj , where Rj , yj ∈ F. Let n = k′ + 1.
According to Eq. (11),

Rk′+1 =


Rk′ , if ak′ = 0, opk′=|,
0, if ak′ = 0, opk′=&,

1, if ak′ = 1, opk′=|,
Rk′ , if ak′ = 1, opk′=& .

(13)

Equation (12) indicates that

⟨xk′+1, yk′+1⟩ =


⟨xk′ , yk′⟩, if ak′ = 0, opk′=|,
⟨1, 0⟩, if ak′ = 0, opk′=&,

⟨xk′ , 1⟩, if ak′ = 1, opk′=|,
⟨xk′ , yk′⟩, if ak′ = 1, opk′=& .

(14)

Hence, Rj = yj , for all 0 ≤ j ≤ k′ + 1; the statement holds
for m = 1. The statement also holds for m > 1 because
arbitrary bits of the output bit-vectors can be computed
independently of one another.

We next extend Theorem 4 to handle inclusive scans
obtained with≪, i.e., in addition to & and |.

Theorem 5. Let a0,a1, · · · ,an ∈ F
∪

Fm be a sequence of
n + 1 bit-vectors of size 1 and m ∈ Z. Consider inclusive scans
R0,R1, . . . ,Rn of these bit-vectors that are summed up using
Eq. (11) with an extended set of operators, opj∈ {&, |,≪}. Let
⟨xj ,yj⟩ be a pair of bit-vectors given by recurrence relation

⟨xj ,yj⟩ =
⟨0m,a0⟩, if j = 0,

⟨xj−1,yj−1⟩ ⊎ ⟨0m,aj⟩, if 0 < j ≤ n, opj=|,
⟨xj−1,yj−1⟩ ⊎ ⟨∼aj , 0m⟩, if 0 < j ≤ n, opj=&,

⟨xj−1,yj−1⟩ ≪2 aj , if 0 < j ≤ n, opj=≪,
(15)

where xj ,yj ∈ Fm. Then, Rj = yj , for all 0 ≤ j ≤ n.

Proof. Let l be the number of ≪ operators that appear in
Rn = a0 op1 a1 op2 · · · opn an. The proof is given by
mathematical induction on l. When l = 0 (i.e., Rn does not
have≪), the statement holds from Theorem 4. Assume that
the statement holds for l = k′ (> 0) and let l = k′ + 1. Let
J be the largest j such that opJ=≪. Then, the statement for
l = k′ + 1 can be proved in the following three steps.

• For all 1 ≤ j < J , Rj = yj holds because RJ−1

includes k′ ≪ operators.
• For j = J , Rj = yj because (1) opJ=≪ indicates

RJ = RJ−1 ≪ aJ and (2) Eq. (15) gives ⟨xJ ,yJ⟩ =
⟨xJ−1,yJ−1⟩ ≪2 aJ = ⟨xJ−1 ≪ aJ ,yJ−1 ≪ aJ⟩.

• For all J < j ≤ n, opj ̸=≪ holds; that is, opj∈ {&, |}
holds. Hence, Theorem 4 can be applied to Rn =
RJ opJ+1 aJ+1 opJ+2 · · · opn an, which indicates
Rj = yj , for all J < j ≤ n.

Thus, the statement holds for arbitrary 0 ≤ l ≤ n, i.e., Rj =
yj holds for all 0 ≤ j ≤ n.

Theorem 6. For all 0 < d ≤ k, Rd,j of Eq. (2) is equivalent to
yd,j given by

⟨xd,j , yd,j⟩ =
⟨0m, 1m−d0d⟩, if j = 0,

(⟨xd,j−1,yd,j−1⟩ ≪2 1)

⊎ ⟨∼Nd,j , Mj&Nd,j⟩, if 0 < j ≤ n,

(16)

where Nd,j = yd−1,j−1 & (yd−1,j−1 ≪ 1) & (yd−1,j ≪ 1).

Proof. When j = 0, it obviously holds. When 0 < j ≤
n, Theorem 5 translates Eq. (2) into a recurrence relation
with ⊎ and ≪2, i.e., when 0 < d ≤ k and 0 < j ≤ n,
Eq. (2) is a recurrence relation with op1 =≪, op2 =|, and
op3 =&. Therefore, applying Theorem 5 to Eq. (2) produces
recurrence relation

⟨xd,j , yd,j⟩
= (⟨xd,j−1, yd,j−1⟩ ≪2 1) ⊎ ⟨0m,Mj⟩ ⊎ ⟨∼Nd,j , 0

m)⟩
= (⟨xd,j−1, yd,j−1⟩ ≪2 1) ⊎ ⟨∼Nd,j , Mj&Nd,j⟩.

Thus, Eq. (2) can be mapped to Eq. (16) using ⊎ and≪2

instead of | and≪.
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Finally, we next show that Algorithm 2 produces the
same results as that of the WM algorithm.

Theorem 7. Let ⟨ud,j , ⟨xd,j ,yd,j⟩⟩ be an inclusive-scan ob-
tained at line 11 of Algorithm 2. Then, for all 0 ≤ j ≤ n and
0 ≤ d ≤ k, yd,j = Rd,j , where Rd,j ∈ Fm is the bit-vector
obtained by Eq. (2).

Proof. When d = 0 (i.e., exact matching), Theorem 2 pro-
vides the proof. We therefore consider the case in which
d > 0. According to Algorithm 2, ⟨ud,j , ⟨xd,j ,yd,j⟩⟩, where
0 ≤ j ≤ n and 0 < d ≤ k, is given by recurrence relation

⟨ud,j , ⟨xd,j ,yd,j⟩⟩ =
⟨0, ⟨0m, 1m−d0d⟩⟩, if j = 0,

⟨ud,j−1, ⟨xd,j−1,yd,j−1⟩⟩
‡⟨1, ⟨∼Md,j , (Mj&Nd,j)⟩⟩, if 0 < j ≤ n.

Definition 4 rewrites the second components of this equa-
tion into Eq. (16), meaning that yd,j = Rd,j for all 0 < d ≤ k
and 0 ≤ j ≤ n.

4.3 Reducing the Time Complexity
The time complexity of the parallel inclusive-scan algorithm
[19] is O(n log n), where n is the number of elements to be
summed. Therefore, our proposed parallel method incurs a
parallelization overhead versus the original SO algorithm,
which finds matching positions in O(nm/w). To reduce this
overhead, we adopt an optimization strategy that reduces
the time complexity to O(nm/w logm).

We consider here the SO algorithm, but the strategy pre-
sented below can easily be applied to the WM algorithm by
interpreting the associative operator † as ‡ for approximate
string matching.

According to Eq. (1), we have

Rj = Mj | (Mj−1 ≪ 1) | · · · | (Mj−m+1 ≪ (m− 1))

| (Mj−m+2 ≪ (m− 2)) | · · · | (M0 ≪ j),

where 0 < j ≤ n. Because x≪ k = 0m holds for all x ∈ Fm

and k ≥ m, Eq. (1) can be rewritten as

Rj = Mj | (Mj−1 ≪ 1) | . . . | (Mj−m+1 ≪ (m−1)). (17)

This equation specifies that exact inclusive-scans are not re-
quired to obtain results of the SO algorithm; in other words,
as the original SO algorithm implies, only the latest m − 1
characters in the text are required for detecting an exact
string match ending at the current position. Consequently,
line 5 of Algorithm 1, i.e., Rj ←

∑j
l=0 Al, can be replaced

with Rj ←
∑j

l=j−m+1 Al to reduce the time complexity
without loss of generality. In this case, n elements are
summed via logm steps, and thereby the time complexity is
reduced from O(n log n) to O(n logm) if m = O(w).

4.4 Reducing Global Synchronization
A major drawback of the parallel scan algorithm [19] is that
it synchronizes all threads, requiring each to walk through
logm steps. Conversely, the CUDA programming model
prohibits global synchronization within a kernel [20] (i.e.,
GPU program); in other words, a kernel completion im-
plicitly synchronizes all GPU threads. Therefore, the kernel
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Fig. 3: Overview of the disjoint version of our tribrid
method. In the first phase, we perform the parallel inclusive-
scan algorithm within each disjoint segment of s (≥ m)
elements. Next, each segment Ci is updated by summing up
the last element Ci−1,s of its left neighbor Ci−1, thus taking
m−1 preceding elements into consideration. By contrast, the
overlapping version can be processed within a single phase,
in which parallel inclusive-scans for contiguous s + m − 1
elements are processed independently.

must be invoked logm times to run Algorithm 1 on the
GPU, thus search throughput suffers from the increased
amount of off-chip memory access. Data in register files
and shared memory have lifetimes of the corresponding
thread block [20], thus threads must fetch data from off-chip
memory at the beginning of every kernel invocation.

To reduce this overhead, we adopt a tribrid strategy that
integrates the inclusive-scan scheme into a segmentation-
based scheme. The following two segmented variations
adapt the tribrid strategy to CUDA: (1) an overlapping
version that requires halo regions and (2) a disjoint ver-
sion that eliminates halo regions but requires one global
synchronization instead of logm global synchronizations.
Both versions reduce synchronization costs by replacing
global synchronization with local synchronization. The goal
here is to limit synchronization to within a small segment.
Similar to the segmentation-based scheme illustrated in Fig.
1a, the overlapping version allows different segments to
be processed independently by running the parallel scan
algorithm for s+m−1 contiguous elements. By contrast, the
disjoint version runs the parallel scan algorithm for each dis-
joint segment of s elements but requires an additional phase
to correctly handle the segmentation border, as illustrated
in Fig. 3. Note that Theorem 2 realizes this disjoint version;
thus, there is a tradeoff between the synchronization cost
and halo region size (i.e., duplicate searching).

Algorithm 3 shows the disjoint version of our proposed
tribrid method, namely SO exact string matching with dis-
joint segmented parallel inclusive-scan. First, our proposed
method assumes that the text is partitioned into ⌈n/s⌉
segments, where s (≥ m) indicates segment size. Second,
our method independently executes the parallel inclusive-
scan algorithm for each segment. Thus, the i-th segment,
where 1 ≤ i ≤ ⌈n/s⌉, produces vector Ci ∈ (Z × Fm)s of
local inclusive-scans such that Ci

def
= (Ci,1, Ci,2, · · · , Ci,s),
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Algorithm 3 SO exact matching with disjoint segmented
parallel inclusive-scan

Input: Text T of n characters, pattern P of m characters,
and segment size s (≥ m)

Output: Bit sequence X of size n that indicates matching
positions

1: Initialize the masks M1,M2, · · · ,Mn according to T
and P

2: A0 ← ⟨0, 1m⟩
3: Aj ← ⟨1,Mj⟩, for all 1 ≤ j ≤ n
4: for i← 1 to ⌈n/s⌉ do in parallel ▷ for each segment
5: for j ← 1 to s do in parallel ▷ for each element
6: Ci,j ←

∑j
l=1 As(i−1)+l ▷ Summation over †

7: end for
8: end for
9: C0,s ← A0

10: for i← 1 to ⌈n/s⌉ do in parallel ▷ for each segment
11: for j ← 1 to s do in parallel ▷ for each element
12: Rs(i−1)+j ← Ci−1,s † Ci,j

13: end for
14: end for
15: ⟨uj ,xj⟩ ← Rj , for all 1 ≤ j ≤ n
16: X[j]← xj [m], for all 1 ≤ j ≤ n
17: return X

where

Ci,j =

j∑
l=1

As(i−1)+l. (18)

The above equation indicates that the first m−1 elements of
Ci do not include the m− 1 left neighbors. Therefore, these
elements must refer to left segment Ci−1 to obtain the final
results, as shown in Fig. 3. The final results can be obtained
by simply adding last element Ci−1,s of the left segment
instead of m − 1 elements (i.e., line 12 of Algorithm 3)
because Ci−1,s has already summed its left neighbors at
line 6. Note that we avoid a conditional branch by letting all
elements participate in this addition because summation of
more than m− 1 preceding elements yields the same result
as that produced from exactly m−1 preceding elements, i.e.,
for all 1 ≤ j ≤ n,

∑j
l=0 Al =

∑j
l=j−m+1 Al, as presented in

Section 4.3.

5 CUSHIFTOR: GPU-BASED IMPLEMENTATION

In this section, we present implementation issues and so-
lutions for achieving full optimization of our proposed
method on a CUDA-compatible GPU. Solutions are pre-
sented for the SO algorithm, but they can easily be applied
to the WM algorithm. We consider the Maxwell architecture
[21] as the target GPU; accordingly, the word size w is set to
32 or 64 according to pattern size m.

Table 1 shows an overview of parallel schemes deployed
in our cuShiftOr implementation. Our tribrid method can
be efficiently implemented with CUDA [20], which shares
instructions among threads of the same warp. Threads
in a warp are naturally synchronized, and thereby, the
inclusive-scan scheme runs efficiently at the warp level
without additional synchronization costs. Further, a shuffle

TABLE 1: Parallelization schemes deployed for each level of
the thread hierarchy. Fine-grained parallelism is exploited
by the parallel scan scheme whereas coarse-grained paral-
lelism is exploited by the segmentation-based scheme.

Level Parallel scheme Halo Synchronization
Grid Segmentation-based yes no
Thread block Inclusive-scan no yes w/ __syncthreads()

Warp Inclusive-scan no yes w/o additional cost
Thread Sequential bit-parallel no n/a

instruction [20] is useful to exchange data for comput-
ing inclusive scans within a warp [39]. The inclusive-scan
scheme is integrated into the disjoint segmented scheme
to avoid duplicate searches at the lower thread level. As
for the thread block level, cuShiftOr deploys the same dis-
joint segmented scheme, because warps in the same thread
block can be synchronized without a kernel completion and
data exchange within a thread block is available through
on-chip shared memory [20], namely, a software-managed
cache. By contrast, the overlapping scheme (i.e., with halo
regions) independently runs at the upper level of the thread
hierarchy—i.e., the grid level—to avoid data exchange be-
tween different thread blocks. The search process then com-
pletes with a single kernel invocation.

In summary, a thread block is responsible for a seg-
ment and its corresponding halo region. This responsible
area is further decomposed into disjoint subsegments, with
each subsegment assigned to a warp via the disjoint seg-
mented scheme described above. Because a warp contains
32 threads, the segment/subsegment size must be a multiple
of 32 to maximize resource utilization. To realize this, the
halo size is set to the maximum word size (i.e., 64) for
arbitrary pattern lengths.

As for the data structure, cuShiftOr assumes that a char-
acter is stored as a 1-byte unsigned integer; thus, alphabet
Σ is allowed to have 256 symbols. Given n-byte text data
and m-byte pattern data, our proposed implementation
produces n-byte data containing bit sequence X ; each bit
of X is stored as 1-byte data to simplify the memory
access pattern. These input/output data are stored in off-
chip global memory [20], where memory read/write (R/W)
throughput can be maximized when each warp accesses
a contiguous memory region of 128 bytes [20]. For such
contiguous access, memory transactions from threads of
the same warp can be coalesced into a single transaction.
Further, shared memory holds a table indexed by alphabet
Σ. This table is useful for computing the mask Mj , where
1 ≤ j ≤ n, according to input character tj , as described in
Section 3.1. Finally, we store current bit-vector Rj , where
0 ≤ j ≤ n, in a register to take advantage of intrinsic
parallelism of bit operations.

5.1 Algorithm Cascading for Coalesced Access
Our cuShiftOr implementation realizes memory access coa-
lescing for 1-byte data by assigning α (≥ 4) contiguous char-
acters of text to a thread. Thus, α represents the task granu-
larity for threads. To enable this assignment, the sequential
bit-parallel algorithm is cascaded to the parallel inclusive-
scan algorithm, as shown in Fig. 4. To more easily describe
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Fig. 4: Overview of algorithm cascading. First, each thread
sequentially computes local inclusive-scans of α consecu-
tive elements. Second, inclusive scans for each α value are
computed by a warp in parallel according to Algorithm 3.
Finally, we obtain global inclusive-scans by adding the
result of the left neighbors into the local inclusive-scans. The
last addition can be skipped if m ≤ w − α+ 1.

this idea, the grid and thread block levels are omitted in the
discussion below. We consider here cascading the disjoint
segmented scheme with the sequential bit-parallel scheme,
each running at the warp and thread levels, respectively. The
cascaded algorithm executes in the following three phases.

1) Local inclusive-scan per thread. The l-th thread of
the i-th warp, where 1 ≤ l ≤ 32 and 1 ≤ i ≤
⌈n/sα⌉, sequentially computes A′

s(i−1)+l, which is
the sum of α contiguous elements of a segment,
where A′

j
def
=

∑α
l=1 Aα(j−1)+l. Note that each warp

is responsible for sα elements (instead of s ele-
ments) owing to algorithm cascading.

2) Parallel inclusive-scan per warp. According to Al-
gorithm 3, the i-th warp, where 1 ≤ i ≤
⌈n/sα⌉ performs the parallel inclusive-scan algo-
rithm of A′

s(i−1)+1, A
′
s(i−1)+2, · · · , A′

s(i−1)+s to gen-
erate every α elements within a segment, i.e.,
C ′

i,1, C
′
i,2, · · · , C ′

i,s. Note that these s elements are
part of the entire segment; the remaining s(α − 1)
elements still hold local sums.

3) Local addition per thread. To obtain the remaining
global sums, the l-th thread of the i-th warp, where
1 ≤ l ≤ 32 and 1 ≤ i ≤ ⌈n/sα⌉, updates its
local sums by adding the global sum of its left
neighboring thread; the global sum to be added is
given by C ′

i,l−1, if l ≥ 2, otherwise it is given by
C ′

i−1,s.

The last addition phase can be skipped if m ≤ w−α+1.
The key idea behind this elimination is to extend the pattern
such that it ends with α − 1 wildcards, which match to
arbitrary characters of the text. Obviously, this extension
reduces the maximum length of the pattern from w to
w − α + 1; however, as shown in Fig. 5, wildcards allow
bit-vector Rj of Eq. (1) to save the current automaton states
for the future α − 1 steps by extending the bit-vector with

Phase 1 and 2 of Fig. 3
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Fig. 5: Wildcard extension for skipping the last addition
phase. After the partial inclusive-scan algorithm of Fig. 4
executes, Rj holds global results, whereas its preceding
α − 1 elements Rj+α−1,Rj+α−2, · · · ,Rj−1 hold local re-
sults. The global results of the α − 1 elements can be
estimated from those of Rj by extending the vector by α−1
bits.

α − 1 bits, i.e., for all 0 ≤ i < α and α < j ≤ n,
Rj [m + i] = Rj−i[m]. This equivalent relation is useful
for retrieving the entire segment from every α element
that hold the complete inclusive-scans. The j-th thread is
allowed to substitute Rj [m],Rj [m+ 1], . . . ,Rj [m+ α− 1]
for Rj [m],Rj+1[m], . . . ,Rα−1[m], respectively.

As for the appropriate value of α, we experimentally de-
termined the best value that maximized search throughput.
As a guideline, α is at least four for 1-byte data. One may
feel that α > 4 fails to coalesce memory transactions because
a contiguous memory region of larger than 128 bytes is
simultaneously accessed by a warp; however, our prelim-
inary results indicate that the number of global memory
transactions does not increase if the memory region size is
512 bytes, which may be due to the demand from computer
graphics applications, which usually deploy the float4
data structure to pack RGBA data into 512-byte data.

5.2 Complete Loop Unrolling

Our proposed method has two distinct loops within the ker-
nel function. One is the d-loop at line 4 of Algorithm 2; the
other is the j-loop at line 8, required for the inclusive-scan
operation. As mentioned in Section 4.3, every thread iterates
through the latter loop logm times instead of log n times,
while the former loop executes k times. Search throughput
can be increased by completely unrolling these loops. To
do so, we use the C++ template presented in [40]. More
specifically, the unrolled kernel function for specific values
of m and k is automatically generated by the C++ tem-
plate at compile time. This template-based scheme generates
m× (k + 1) kernel functions. Because constant values of m
and k are embedded at compile time, the generated kernel
consumes fewer register files.

One drawback of the template-based scheme here is
that it is not robust against increases in m and k. Let M
and K be the maximum values of m and k acceptable
at compile time, respectively, with m ≤ M and k ≤ K .
Consider a kernel function generated for pattern size m and
maximum error k. The generated function then contains
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Fig. 6: Search throughput of our proposed cuShiftOr implementation with a variety of values for granularity size α. Results
are shown for (a) k = 0, (b) k = 1, and (c) k = 2. Text and alphabet sizes were fixed to n = 231 and σ = 64, respectively.

k logm statements because there is a double-nested loop,
where the outer and inner loops iterate k and logm times,
respectively. Hence, the total number of statements is given
by

∑K
k=1

∑logM
m=1 k logm. Thus, the code size is bounded by

O(K2M logM), which restricts m and k.

6 EXPERIMENTAL RESULTS

We evaluated our proposed cuShiftOr implementation in
terms of search throughput ρ. Note that search throughput
does not include data transfer time between the CPU and
GPU. Our experimental machine had an Intel Xeon CPU
E5-2660 v3 CPU with 64 GB RAM and an NVIDIA GeForce
GTX TITAN X (Maxwell) GPU with 12 GB VRAM. We used
CUDA 7.5 [20], GPU Driver 353.82, and Visual Studio 2013
running on Windows 7.

For a long string that exceeds the capacity of GPU mem-
ory, ρ is obviously limited by the bandwidth of the PCIe bus.
On the machine used in our experiments, the data transfer
rate from the CPU to GPU was 10.6 GB/s and 11.2 GB/s for
the opposite direction. By contrast, the effective bandwidth
of the GPU memory reached 248.8 GB/s on the experimental
GPU according to the bandwidthTest program [39]. Because
string matching is usually a memory-intensive operation,
we focused on the in-core situation rather than the out-
of-core situation. Therefore, in-core search throughput ρ is
bounded by 248.8 GB/s or 1.99 Tbps.

As for a comparable method, we implemented GBPR
[11] as a segmentation-based method. Our method differs
from GBPR in realizing (1) a parallel scan algorithm that
removes duplicate searches by eliminating the halo regions
and (2) algorithm cascading that facilitates coalesced mem-
ory access by mapping appropriate algorithms to the thread
hierarchy. We implemented GBPR by ourselves because it
was not publicly available. Our GBPR implementation used
the same data structure as the original GBPR; we used
shared memory to store bit masks and global memory to
store the text and search results. Segment size s was exper-
imentally determined to be s = 8, which maximized search
throughput ρ on our experimental machine. The readers can
refer to the supplementary material for detailed description
on GBPR including a sensitivity study on s and efficiency
analysis. We also implemented an extended version of GBPR
that realizes coalesced memory access with a tiling tech-
nique. Similar to cuShiftOr, the tiled GBPR allows every
thread to fetch α (> 1) contiguous characters at a time to
locally update automata states α times. This procedure is
repeated until the end of its responsible segment is reached.

6.1 Parameter Tuning

We first conducted a preliminary experiment to determine
the best task granularity α that maximized the search
throughput ρ for cuShiftOr. Figure 6 shows search through-
put ρ measured while varying task granularity α and
maximum error k, with maximum text size n = 231 and
maximum alphabet size σ = 64. The text and patterns
were generated randomly. As shown in the figure, α greatly
impacts search throughput ρ, which ranged from 0.26 to
1.88 Tbps when k = 0 (i.e., exact matching). According to
these results, we decided to use α = 16, which achieved the
highest throughput for most pattern sizes.

In Fig. 6a, we observe that cuShiftOr significantly
dropped search throughput to 1.05 Tbps when m > 32. For
such a long pattern, cuShiftOr uses a 64-bit word to store the
bit-vector but the current CUDA does not provide shuffle
instructions for 64-bit data. Consequently, switching word
size w degraded the efficiency of the shuffle instructions
required for inclusive-scan computation; in other words,
a 64-bit shuffle operation was implemented using 32-bit
shuffle instructions. This performance degradation was not
observed with smaller α, where search throughput ρ was
determined by off-chip memory access rather than instruc-
tion issue rate (i.e., on-chip memory access). Therefore, we
conclude here that choosing the best task granularity α is
key to maximizing search throughput ρ.

6.2 Performance Analysis

Using task granularity α determined using the methods
above, we measured search throughput ρ while varying text
size n, pattern size m, maximum error k, and alphabet size
σ. The text and patterns were again generated randomly.

Figure 7 shows search throughput ρ measured while
varying pattern size m and maximum error k with maxi-
mum text size n = 231 and maximum alphabet size σ = 64.
Here, cuShiftOr was 16.9 times faster than GBPR (α = 1)
when k = 0. In particular, search throughput ρ for a short
pattern (i.e., k = 0 and m ≤ 32) reached 1.88 Tbps, demon-
strating a high efficiency of 94% in terms of off-chip memory
R/W throughput. This achieved efficiency indicates that
cuShiftOr successfully exploits the strength of the latency
hiding architecture; in other words, scan computation is
fully overlapped with off-chip memory access.

Both cuShiftOr and GBPR saw degradation in search
throughput ρ as we increased pattern size m from 33 to 64;
however, this decrease was relatively small for cuShiftOr.
As an example, when k = 0, cuShiftOr decreased search
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Fig. 7: Search throughput with different pattern sizes m. Results are shown for (a) k = 0, (b) k = 1, and (c) k = 2. Text and
alphabet sizes were fixed to n = 231 and σ = 64, respectively. The original GBPR corresponds to α = 1.
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Fig. 8: Search throughput with varying text sizes n. Results are shown for (a) k = 0, (b) k = 1, and (c) k = 2. Pattern size
m and alphabet size σ were fixed to m = 64 and σ = 64, respectively. The vertical axis is presented as a logarithmic scale.

throughput ρ by only 2%, whereas GBPR (α = 1) de-
creased ρ by 45%. We attribute this substantial difference
to the deployed parallel scheme. As mentioned above, the
instruction issue rate limited the performance of cuShiftOr.
The number of instructions per thread is given by O(logm)
for cuShiftOr because threads compute inclusive-scans in
logm parallel steps. By contrast, threads in GBPR (i.e., the
segmentation-based scheme) are responsible for s + m − 1
characters in the text, meaning that each thread must read
a segment of O(s + m) characters from off-chip memory,
where s = 8. Therefore, cuShiftOr is more robust than
GBPR against increases of pattern size m. Obviously, this
conclusion assumes that pattern size is short enough to
fit within machine word size w. Note that cuShiftOr also
deploys the segmentation-based scheme, but segments are
assigned to thread blocks, namely, a higher level of thread
hierarchy. Therefore, s is much larger than m, which can be
ignored at the thread level.

As for approximate string matching, cuShiftOr dropped
search throughput ρ as we increased maximum error k.
For example, the maximum ρ for k = 1 (or k = 2) was
approximately 39% (or 29%) lower than that of k = 0 (or
k = 1, respectively). By contrast, GBPR (α = 1) maintained
a high search throughput ρ for arbitrary k. We attribute
this difference to the performance bottleneck of the GPU
code. The performance bottleneck of cuShiftOr was on-
chip memory, whereas that of GBPR was off-chip memory.
The amount of on-chip memory access increases with k
because the time complexity of the WM algorithm is given
by O(nm/wk), which linearly increases with k. By contrast,
the amount of off-chip memory access is independent of
k because Algorithm 2 reads and writes off-chip memory
data only once at lines 1 and 13, respectively. Consequently,
cuShiftOr degraded search throughput ρ as k increased,
whereas GBPR held ρ almost constant for arbitrary k.

Our tiled version of GBPR (α > 1) explains why

cuShiftOr was faster than the original GBPR. In Fig. 7c, the
tiled GBPR (α = 8) achieved up to 93% of search throughput
obtained via cuShiftOr; as for approximate string matching,
the tiling technique (i.e., memory coalescing) is key for elim-
inating the performance gap between cuShiftOr and GBPR.
However, memory coalescing was insufficient in yielding
Tbps speeds for search throughput where on-chip memory
access determines performance. In this case, the amount
of on-chip memory access must be reduced by eliminating
duplicate searches.

Figure 8 shows search throughput measured while vary-
ing text size n for maximum pattern size m = 64 and
σ = 64. The figure indicates that the text should contain at
least 224 characters (i.e., 16 MB text data) to achieve at least
75% of the maximum search throughput. In contrast, GBPR
achieved 75% of the maximum search throughput with 222

characters, which was 25% smaller than that needed for
cuShiftOr. This difference occurred due to a side effect of
algorithm cascading in which a large α causes serialization
on each thread. In fact, the ratio for 222 characters was
increased from 49% to 74% by reducing task granularity α
from 16 to 2. Therefore, cuShiftOr requires a larger text than
GBPR to increase the ratio of parallel processing over serial
processing, as Amdahl’s law [41] points out.

We also found that, when n ≤ 222, GBPR varied ρ
according to n, which differed from the behavior that we
theoretically expected. GBPR processes ⌈n/s⌉ segments of
size s + m − 1 on p processors. Consequently, assuming
that m = O(w) (i.e., short patterns), the search through-
put of GBPR is expected to be sp/(s + m − 1), which is
independent of n. This gap between theoretical behavior
and actual behavior is due to the lack of parallelism that
can cause idle time on massively parallel GPU threads.
The GPU architecture requires a large number of threads
to sufficiently hide off-chip memory latency by overlapping
memory access with data-independent computation. Notice
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Fig. 9: Search throughput with varying alphabet sizes σ. Results are shown for (a) k = 0, (b) k = 1, and (c) k = 2. Text size
and pattern size were fixed to n = 231 and m = 64, respectively.

that cuShiftOr also faced on the same issue when n ≤ 222.
Finally, as shown in Fig. 9, we measured search through-

put ρ while varying alphabet size σ for maximum text size
n = 231 and maximum pattern size m = 64. When k = 0,
ρ clearly decreased as we increased σ. By contrast, we did
not observe such behavior when k > 0. Search throughput
ρ for k = 0 was determined by on-chip memory access
rather than off-chip memory access. Consequently, bank
conflicts in shared memory limited ρ when σ > 32 because
the shared memory of the current CUDA is structured
with 32 banks; further, the cuShiftOr implementation uses
shared memory to store a table indexed by alphabet Σ,
as mentioned in Section 5. Realizing conflict-free access to
this shared table is not easy owing to the irregularity of
characters in the text.

6.3 Performance Comparison with Corpus

In this subsection, we show performance comparison results
obtained using practical data sets. For text data, we used the
Pizza&Chilli Corpus [42], which includes corpus data sets
across a variety of fields. The first 64 characters of the text
were selected as the pattern to be searched for. In addition
to GBPR [11], we also compared cuShiftOr with XBitPar [26]
obtained from http://xbitpar.sourceforge.net/.

Figure 10 shows measured search throughputs. When
k = 0 and m = 64, search throughput ρ of cuShiftOr
ranged from 1782 to 1872 Gbps. These throughputs were
30% higher than those expected from results obtained with
randomly-generated data sets (i.e., Fig. 9a); we expected
search throughput to be approximately 1400 Gbps when
σ > 32. This unexpected behavior was due to the skewed
distribution of characters in the corpus, which did not
exist in the randomly-generated data sets. As an example,
the ENGLISH data set contained 239 characters, but its
inverse probability of matching was 28.7, indicating that
specific characters in the alphabet frequently appeared in
the text. In such a case, cuShiftOr can slightly increase search
throughput by avoiding bank conflicts in shared memory.
For example, bit masks for A, G, T, and C are stored in
the 1st, 7th, 20th, and 3rd banks, respectively, because the
table of bit masks is indexed using the corresponding ASCII
codes. Consequently, bank conflicts will not occur for bio-
logical data that contains these four characters. In contrast,
randomly generated datasets contain 256 characters, thus
each bank is responsible for eight characters. In this case,
bank conflicts occur when 32 threads in a warp access these
characters at the same time.
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Fig. 10: Search throughput using the Pizza&Chilli Corpus
[42]. Results are shown for (a) k = 0, (b) k = 1, and (c)
k = 2, where 4 ≤ m ≤ 64. PITCHES, XML, SOURCES,
PROTEINS, ENGLISH, and DNA data sets have alphabet
sizes σ of 133, 97, 230, 27, 239, and 16, respectively, and their
inverse probabilities of matching are 39.8, 28.7, 24.8, 17.0,
15.3, and, 3.9, respectively.

The increases in terms of runtimes of cuShiftOr over
GBPR were similar to those obtained with the random data
presented in Section 6.2 above. Here, cuShiftOr was 15.7–
16.7 times faster than GBPR when m = 32 and k = 0, but
the gap between performance measures decreased as we
increased k. More specifically, we observed 9.3–10.2 times
and 6.7–7.4 times when k = 1 and k = 2, respectively. Thus,
the family of bit-parallel algorithms demonstrated stable
search throughput for arbitrary data.

Both cuShiftOr and GBPR failed to search a pattern
longer than 64 characters, whereas XBitPar successfully
processed a long pattern of up to 1024 characters. Nonethe-
less, cuShiftOr was 93–108 times faster than XBitPar when
m = 32 and k = 0. XBitPar adopts a 1024-bit virtual
word for arbitrary m, thus the execution efficiency drops for
short queries. More specifically, w −m bits in a word were
wasted during search, thus only 3% of threads were utilized
when m = 32. Therefore, cuShiftOr and XBitPar should be
appropriately switched according to pattern length m. Note
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that cuShiftOr can be extended to search a long pattern with
a virtual word. However, this extension degrades search
throughput due to the overhead required to move data
between physical words.

Thus, the limitation on pattern length is critical for long
patterns, but there are many real-world cases that require
support only for short patterns. For example, a text search
query typically consists of two to four words and the pattern
length distribution follows a power law [43]. With respect
to biological applications, next-generation sequencing sys-
tems produce short reads up to several hundred characters,
which are then aligned to a long sequence of millions of
characters.

6.4 Performance Comparison with Sequence Aligners

Finally, we compared cuShiftOr with indexing-based se-
quence aligners running on a CPU: BitMapper [34] and
mrFAST [35] as all-mappers, which find all mappings of a
given sequencing read in the reference genome by setting
a maximum edit distance, and CUSHAW2 [36], BWA-MEM
[37], and Bowtie2 [38] as best-mappers, which aim to report
the best few mappings under similar constraints. Millions
of short reads from the 1000 Genomes Project were aligned
to Homo sapiens chromosome 1, GRCh38.p7. As shown
in Fig. 11, cuShiftOr achieved search throughputs of 0.35–
0.4 Tbps. In contrast, sophisticated indexes allowed the
aligners to focus on possible matching locations in the text.
Consequently, all-mappers and best-mappers aligned reads
at approximately 3–12 Tbps and 132–836 Tbps, respectively.

Figure 11 also shows mapping ratios, i.e., the number
of mapped reads divided by the total number of reads.
The mapping ratios of cuShiftOr were not exactly the same
as those of mrFAST [35], although the same maximum
edit distance of two was commonly used for search. This
difference was due to reverse complementary sequences and
ambiguous nucleotides; cuShiftOr accepts a single pattern
per search, thus the search process must be invoked twice
for the original pattern and its reverse complementary pat-
tern. Moreover, these results must be merged into a single
result. Finally, cuShiftOr neither skips reads that include
many ambiguity characters nor finds a match between the
ambiguity character (N) and any character (A, G, T, or C).

Consequently, we think that cuShiftOr is useful for ac-
celerating online searching where indexes cannot be con-
structed before searching. For example, cuShiftOr can be
used for text stream mining in social networks, where text
streams are analyzed on the fly. Because CPU-GPU data
transfer usually limits the performance of GPU systems, the
impact of cuShiftOr increases if text streams are iteratively
analyzed on the GPU. Similar promising examples are net-
work intrusion detection and code debugging, where log
data are iteratively examined to find regions of interest.

7 CONCLUSION

In this paper, we presented a tribrid parallel method, named
cuShiftOr, that is capable of exploiting massive data paral-
lelism inherent in string matching. Our proposed method
interprets the SO and WM algorithms as inclusive-scan
operations. This interpretation allows massive numbers of
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Fig. 11: Alignment results of cuShiftOr and sequence align-
ers [34]–[38]. Results for (a) National Center for Biotechnol-
ogy Information (NCBI) SRR003084 (8.8 M reads of 36 base
pair (bp)) and (b) NCBI SRR003092 (16.1 M reads of 51 bp).
BitMapper failed to align SRR003084.

threads to run without halo regions, but requires global syn-
chronization. To reduce these synchronization costs, we inte-
grated the scan scheme into a segmentation-based scheme,
which does require halo regions (i.e., duplicate work) but
avoids synchronization. We showed that these contrasting
methods can be appropriately mapped onto the hierarchy
of GPU threads. As such, the scan scheme exploits fine-
grained parallelism to minimize duplicate work, whereas
the segmentation-based scheme exploits coarse-grained par-
allelism to avoid global synchronization.

We analyzed the performance of cuShiftOr and com-
pared its performance to previous segmentation-based
methods. In our results, cuShiftOr achieved 1.88 Tbps of
in-core search throughput for short queries, which was
equivalent to 94% execution efficiency in terms of off-chip
memory R/W throughput. However, the throughputs were
not satisfactory compared to those of sequence aligners that
construct indexes before searching. Thus, we conclude that
cuShiftOr is useful for accelerating online string matching
for short patterns containing up to 64 characters.
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