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PAPER

Cache-Aware GPU Optimization for Out-of-Core Cone Beam CT
Reconstruction of High-Resolution Volumes

Yuechao LU†, Nonmember, Fumihiko INO†a), and Kenichi HAGIHARA†, Members

SUMMARY This paper proposes a cache-aware optimization method
to accelerate out-of-core cone beam computed tomography reconstruction
on a graphics processing unit (GPU) device. Our proposed method extends
a previous method by increasing the cache hit rate so as to speed up the
reconstruction of high-resolution volumes that exceed the capacity of de-
vice memory. More specifically, our approach accelerates the well-known
Feldkamp-Davis-Kress algorithm by utilizing the following three strate-
gies: (1) a loop organization strategy that identifies the best tradeoff point
between the cache hit rate and the number of off-chip memory accesses; (2)
a data structure that exploits high locality within a layered texture; and (3)
a fully pipelined strategy for hiding file input/output (I/O) time with GPU
execution and data transfer times. We implement our proposed method
on NVIDIA’s latest Maxwell architecture and provide tuning guidelines
for adjusting the execution parameters, which include the granularity and
shape of thread blocks as well as the granularity of I/O data to be streamed
through the pipeline, which maximizes reconstruction performance. Our
experimental results show that it took less than three minutes to reconstruct
a 20483-voxel volume from 1200 20482-pixel projection images on a sin-
gle GPU; this translates to a speedup of approximately 1.47 as compared to
the previous method.
key words: cone beam reconstruction, GPU, CUDA, cache optimization

1. Introduction

Cone beam computed tomography (CT) reconstruction
is a radiology imaging technology that converts two-
dimensional X-ray projection images generated by a rotary
CT scanner into a three-dimensional volume, such that CT
data can be viewed using three-dimensional visualization
software. The Feldkamp-Davis-Kress (FDK) algorithm [1]
is the de facto standard for cone beam CT reconstruction
and is widely adopted in medical and industrial applica-
tions [2]–[4]. Because reconstruction time is critical, es-
pecially for real-time medical applications such as image-
guided surgery [5], [6], research activities on accelerating
the FDK algorithm have been ongoing ever since its advent
in 1984.

With the development of parallel computing and com-
puter graphics technologies, efforts to parallelize the FDK
algorithm have included various computing devices, includ-
ing the graphics processing unit (GPU) [7], [8], a cell broad-
band engine (CBE) [9], a field-programmable gate array
(FPGA) [10], and a Xeon Phi coprocessor [11]. In par-
ticular, utilizing the compute unified device architecture
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(CUDA) compatible GPUs [12], to parallelize FDK com-
putation has gained popularity due to its high-performance
and low-cost implementation as compared to other de-
vices [2], [13], [14].

In general, using implementations based on CUDA
offloads the performance bottleneck of a CPU-based se-
quential code. Such offloaded workloads can be imple-
mented as kernel functions, which can be parallelized via
millions of GPU threads for acceleration. Given this par-
allelization technique, the performance bottleneck of the
FDK algorithm lies in its back-projection of projection im-
ages in which interpolated pixel values are accumulated
back to form voxel values, which then compose the three-
dimensional volume. Therefore, typical implementations
store projection images in textures to take advantage of
hardware-accelerated interpolation available on the GPU.

In addition to this fundamental implementation
scheme, Okitsu et al. [15] presented a multiplication method
that back-projects multiple projections with a single ker-
nel invocation. This multiplication method accelerates the
back-projection procedure by reducing the number of off-
chip memory accesses. In [15], Okitsu et al. concluded
that device memory bandwidth (i.e., the memory band-
width between streaming multiprocessors (SMs) [12] and
off-chip memory) determines reconstruction throughput on
a GeForce 8800 GTX GPU; however, cache optimization
issues were not considered in detail because the deployed
G80 architecture [16] did not have a sophisticated cache as
compared to state-of-the-art GPU architectures.

Therefore, in this paper, we propose a cache-aware
optimization method to accelerate the FDK algorithm for
handling a large data on a GPU. Our proposed method ex-
tends Okitsu’s method [15] by increasing the cache hit rate,
thereby improving out-of-core cone beam reconstruction.
Note that the term “out-of-core” here means that the in-
put/output (I/O) data exceed the capacity of device mem-
ory. Our proposed method consists of the following three
key strategies: (1) a loop organization strategy which iden-
tifies the best tradeoff point between the cache hit rate and
the number of off-chip memory accesses; (2) a data structure
that exploits high locality within a layered texture; and (3)
a fully pipelined strategy for hiding file I/O times with GPU
execution and data transfer times. We analyze the underly-
ing mechanism of these strategies and provide tuning guide-
lines for adjusting the execution parameters, which include
the granularity and shape of thread blocks [12] and the gran-
ularity of I/O data to be streamed through the pipeline, the
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Table 1 Comparison of the performance of our work with relevant recent works. Note that back-projection throughput ρ, which is measured
in GUPS, is given by ρ = NXYZ/T , where N is the number of projections, X × Y × Z is the volume size in voxels, and T is the back-projection
time, which includes data transfer times between CPU and GPU. Further, U and V are the horizontal and vertical sizes of a projection,
respectively. Finally, efficiency E is given by E = 4ρ/B, where B is the total memory bandwidth of the deployed machine; efficient cache
utilization achieves an efficiency of more than 100%.

Work Platform Memory spec. Data spec. Performance
Bandwidth Capacity NUV → XYZ Size ρ E

(GB/s) (GB) (GB) (GUPS) (%)
Scherl [14] 8800 GTX 86.4 0.8 414 × 1024 × 1024→ 5123 1.6→ 0.5 6.2 29
Okitsu [15] 2×Tesla C870 76.8 1.5 1024 × 1024 × 1024→ 10243 4.0→ 4.0 48.9 127
Ino [17] 4×Tesla S1070 102.0 4.0 2048 × 2048 × 2048→ 20483 32.0→ 32.0 105.7 104
Noël [18] GTX 280 141.7 1.0 106 × 1024 × 1024→ 5123 0.4→ 0.5 2.3 6
Zheng [19] GTX 480 177.4 1.5 364 × 1024 × 768→ 5123 1.1→ 0.5 12.0 27
Zhang [20] 2×GTS 450 57.7 1.0 360 × 1024 × 1024→ 5123 1.4→ 0.5 11.1 38
Treibig [21] 4×Xeon E7-4870 34.2 N/A 496 × 1248 × 960→ 10243 2.2→ 4.0 12.0 35
Papenhausen [22] GTX 680 192.3 2.0 496 × 1248 × 960→ 5123 2.2→ 0.5 72.3 150
Zinßer [23] GTX 680 192.3 2.0 496 × 1248 × 960→ 10243 2.2→ 4.0 88.2 183
Blas [24] 2×GTX 680 192.3 2.0 720 × 1024 × 1024→ 10243 2.8→ 4.0 117.5 122
Serrano [25] 2×GTX 680 192.3 2.0 360 × 512 × 512→ 5123 0.4→ 0.5 27.1 28

2×Xeon Phi 7120P 352.0 16.0 360 × 512 × 512→ 5123 0.4→ 0.5 26.7 15
This work GTX 980 224.0 4.0 1200 × 512 × 512→ 5123 1.2→ 0.5 116.7 208

1200 × 1024 × 1024→ 10243 4.7→ 4.0 128.5 229
1200 × 2048 × 2048→ 20483 18.8→ 32.0 92.9 166

latter maximizing reconstruction performance on NVIDIA’s
latest Maxwell architecture [26].

The rest of this paper is organized as follows. Section 2
introduces related studies regarding the acceleration of cone
beam CT reconstruction. Section 3 summarizes the FDK
algorithm and its previous GPU-based implementation [15].
Section 4 describes our proposed method, and then Sect. 5
presents our experimental results along with a discussion on
tuning for the Maxwell architecture. Finally, Sect. 6 con-
cludes our paper with future work.

2. Related Work

Table 1 shows a comparison of our present work with recent
studies, showing the advantages of our proposed method.
In the table, the back-projection throughput ρ is presented
in giga voxel updates per second (GUPS), where giga de-
notes 109. In summary, our present work employs a single-
GPU machine to achieve high back-projection throughput
for large amounts of data that exceed not only device mem-
ory but also host memory. Further, we incorporate an opti-
mization method based on NVIDIA’s latest Maxwell archi-
tecture [26].

To our knowledge, Scherl et al. [14] first proposed the
use of a CUDA-based GPU to accelerate the FDK algorithm,
claiming that reducing register file usage raised GPU occu-
pancy [12] so as to accelerate reconstruction. They demon-
strated that a GeForce 8800 GTX GPU achieved two times
higher reconstruction performance as compared to a CBE.
A similar CUDA-based approach with similar results was
presented by Noël et al. [18].

As for kernel optimization, Okitsu et al. [15] extended
Xu’s method [7], who first proposed back-projecting multi-
ple projections in a single kernel invocation. These multi-
plication schemes reduced the number of off-chip memory
accesses and that of kernel invocations. They concluded that

device memory bandwidth determines reconstruction per-
formance; thus, the back-projection kernel should process
more projections at a time. A similar scheme was presented
by Papenhausen et al. [22], who processed 64 projections
with a single kernel execution. In contrast to the above stud-
ies, we show that excessive projections result in a lower tex-
ture cache hit rate on the latest Maxwell architecture [26].
Consequently, it is important to find the best tradeoff point
between texture cache hit rate and the number of off-chip
memory accesses.

Based on Okitsu’s multiplication method [15], Zinßer
et al. [23] modified the nested loop structure proposed in
[15] such that threads that share the same instruction can
simultaneously access a single projection. Zinßer et al.
claimed that their loop organization not only increased the
texture cache hit rate but also reduced the number of off-
chip memory accesses by processing 32 projections with a
single kernel invocation. A key drawback of their loop or-
ganization is that it consumes more registers than the orig-
inal organization. Consequently, only four xy-slices of the
volume were produced by a kernel invocation, whereas the
original organization produced 512 xy-slices at a time. This
consumption issue must be resolved for large amounts of
data, which we focus on in the present study, because 128
times more kernel invocations are required to produce the
entire volume. In our work, we present a data structure ca-
pable of achieving an L1/texture cache hit rate of more than
95%, even with the original loop organization.

In contrast to the input-related optimization mentioned
above, Zheng et al. [19] presented a cache-aware method ca-
pable of maximizing write throughput for the output vol-
ume. Their method rearranges volume data according to the
back-projection angle such that a series of memory trans-
actions can be coalesced into a single transaction. Since
this data rearrangement incurs overhead, they allocated an-
other copy of the volume to avoid rearrangement overhead;
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however, such duplicated data must be eliminated to han-
dle large amounts of data on limited device memory. Our
method realizes memory access coalescence by adopting a
workload distribution scheme in which threads are respon-
sible for angle-independent regions of the volume.

With respect to out-of-core reconstruction in which I/O
data flows exceed device memory, several studies have ex-
plored a multi-GPU machine to achieve further accelera-
tion [17], [20], [24]. Existing multi-GPU implementations
adopt a pipelined approach to overlap kernel execution with
data transfer between CPU and GPU; however, except for
Blas et al. [24], file I/O overhead has not been considered
in detail. Blas et al. [24] did indeed consider file I/O over-
head, thus realizing on-the-fly reconstruction, which pro-
duces the volume immediately after image acquisition; how-
ever, cache optimization issues were not addressed. Our
out-of-core pipelined strategy yields a fully pipelined cache-
aware solution for processing large amounts of data on a
single-GPU system. Further, although we evaluated the
advantages of our method on a single-GPU machine, our
method can be expanded to support a multi-GPU environ-
ment in a straightforward manner.

On the other hand, Serrano et al. [25] proposed using
a directive-based programming approach [27] to parallelize
the FDK algorithm on GPUs and Intel Xeon Phi coproces-
sors. Compared with CUDA, this directive-based approach
provides an easy programming scheme in which paralleliza-
tion is achieved by adding compiler directives to sequential
code; however, using such a high-level programming style
degrades the performance. Due to the same performance
related reason, we prefer CUDA rather than OpenCL [28].

Finally, Treibig et al. [21] explored optimizing a single-
instruction multiple data (SIMD) instruction set called Ad-
vanced Vector eXtensions (AVX) [29]. They indicated
that GPU-based solutions degrade reconstruction through-
put for large amounts of data, because limited device mem-
ory requires data transfers between CPU and GPU. Our
pipelined solution overlaps these required data transfers
with GPU computation, thereby achieving higher out-of-
core reconstruction performance as compared to CPU-based
approaches (Table 1).

3. Preliminaries

Let F be the three-dimensional volume of size X × Y × Z
to be reconstructed. To estimate each voxel value F(x, y, z)
in F, where 0 ≤ x < X, 0 ≤ y < Y , and 0 ≤ z < Z,
the FDK algorithm back-projects set P of two-dimensional
projection images onto the target volume F, where P =
{P0, P1, . . . , PN−1} and N is the number of projection im-
ages. As shown in Fig. 1, Pn represents a projection obtained
with rotational angle θn, where 0 ≤ n < N. In the following
subsections, we assume that all projection images comprise
U × V pixels.

Fig. 1 Geometry for back-projection of the n-th filtered projection,
where 0 ≤ n < N.

3.1 FDK Reconstruction Algorithm

The FDK algorithm is composed of two processing stages,
i.e., ramp filtering and back-projection. The ramp filtering
stage performs one-dimensional convolution along the hor-
izontal direction (i.e., the u-axis). Given raw projection Pn,
where 0 ≤ n < N, the pixel value Qn(u, v) of filtered projec-
tion Qn, where 0 ≤ u < U and 0 ≤ v < V , is given by

Qn(u, v) =
R∑

r=−R

2
π2(1−4r2)

D√
D2+r2+v2

Pn(r, v), (1)

where R denotes the ramp filter radius and D denotes the
distance between the X-ray source and the projection panel,
as shown in Fig. 1.

Next, the back-projection stage back-projects filtered
projections Q0,Q1, . . . ,QN−1 into three-dimensional vol-
ume F. Voxel value F(x, y, z) at point (x, y, z) is given by

F(x, y, z) =
1

2πN

N−1∑
n=0

W(x, y, n)

Qn(u(x, y, n), v(x, y, z, n)), (2)

where weight W(x, y, n) and coordinates u(x, y, n) and
v(x, y, z, n) are calculated separately by

W(x, y, n) =

(
dn

dn − x cos θn − y sin θn

)2

, (3)

u(x, y, n) =
D(−x sin θn + y cos θn)
dn − x cos θn − y sin θn

, (4)

v(x, y, z, n) =
Dz

dn − x cos θn − y sin θn
, (5)

where dn denotes the distance between the X-ray source and
the origin of the xyz coordinates.

According to Eq. (2), the time complexity of the
back-projection stage is O(NXYZ), which represents the
performance bottleneck of the FDK algorithm. In par-
ticular, three-dimensional data accesses required to read
Qn(u(x, y, n), v(x, y, z, n)) and write F(x, y, z) determine to-
tal execution time; as such, the back-projection stage con-
stitutes more than half of the total execution time [15], [19].
Note that Eq. (5) can be efficiently computed via the follow-
ing recurrence relation:

v(x, y, z + 1, n) = v(x, y, z, n) + v(x, y, 1, n). (6)
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Because the second term v(x, y, 1, n) can be precomputed
for all n, this relation is useful for reducing computational
cost; more specifically, only an addition is needed to com-
pute v(x, y, z, n) within the z loop.

3.2 Maxwell GPU Architecture

Figure 2 provides an overview of the Maxwell GPU ar-
chitecture [26]. Similar to other CUDA-compatible GPUs,
this architecture has an array of SMs to process millions of
tasks in parallel. Each SM has 128 CUDA cores with on-
chip memory, including registers, a shared memory, and an
L1/texture cache. Registers provide the shortest access la-
tency, analogous to CPU registers, but different in number;
here there are 64K 32-bit registers. The shared memory is
a software-managed cache that allows CUDA cores to more
efficiently share data inside an SM. Finally, the L1/texture
cache acts as a read-only cache and coalescing buffer for
off-chip memory access [30].

Outside of the SMs, there is an off-chip memory called
device memory. Although device memory provides a large
storage of up to 12 GB, its latency of several hundreds of
clock cycles is much longer than that of the on-chip mem-
ory. Device memory can be used as both texture and global
memory. Here, texture memory stores read-only data that
can be accessed using hardware interpolation, while global
memory stores readable/writable data for CUDA cores. As
shown in the figure, the L2 cache is an on-chip cache lo-
cated between the SMs and global memory. Note that the
L1/texture cache is bypassed to access data stored in global
memory [30].

During kernel execution, threads are cyclically as-
signed to SMs in the unit of a thread block [12], i.e., a
group of threads organized by CUDA programmers. Dif-
ferent thread blocks must be independent of each other with
respect to data dependencies; otherwise parallelization can-
not be correctly achieved. Resident thread blocks that have
been assigned consume SM resources, including registers
and shared memory, such that there are limitations on the
maximum number of resident threads and that of thread
blocks. This assignment process is repeated until all thread
blocks finish execution.

Each resident thread block is further divided into

Fig. 2 Maxwell GPU architecture [26]. A GPU consists of an array of
SMs, each including hundreds of CUDA cores, an L1/texture cache, and
registers. In addition to this on-chip memory, an off-chip memory is avail-
able on the graphics board.

groups of 32 consecutive threads, called a warp. Threads in
a warp, which share the same instruction at each clock cycle,
are processed on an SM in parallel, which is called single-
instruction multiple-thread (SIMT) [12] in vendor terminol-
ogy. While threads in the same warp access global mem-
ory, memory access coalescence is critical for maximizing
effective memory bandwidth [12]. In most cases, assigning
multiple thread blocks to an SM is an effective approach for
overlapping memory accesses with computation, because
the SM has more data-independent resident warps to switch
while waiting for data to be fetched from off-chip memory.
Thus, if we maximize the occupancy, or ratio of the num-
ber of resident thread blocks to the maximum number of
resident thread blocks, we can hide memory access laten-
cies with computation. In other words, fewer resident thread
blocks expose memory latency.

3.3 GPU Implementation of the FDK Algorithm

As presented in Table 1, Okitsu’s method [15] was one of
the most efficient comparative methods in terms of memory
bandwidth efficiency. Figure 3 (a) illustrates the reconstruc-
tion pipeline realized in their implementation. This pipeline
has four major stages, i.e., projection input, ramp filtering,
back-projection, and volume output.

In the projection input stage, raw projections P0,
P1, . . . , PN−1 are loaded from a storage device to host mem-
ory (i.e., main memory), and then sequentially transferred
to device memory. Next, the ramp filtering stage filters
each projection Pn into Qn, where 0 ≤ n < N, and
transfers these filtered projections back to host memory.
The back-projection stage then handles both filtered pro-
jections and volume via a divide-and-conquer approach to

Fig. 3 Reconstruction pipelines of (a) Okitsu’s previous method [15] and
(b) the proposed method. Both pipelines consist of the following eight
steps, with the first and last steps not pipelined in the previous method: (1)
raw projections are loaded from a storage device into host memory, (2) pro-
jections in host memory are then transferred to device memory; (3) ramp
filtering is applied to produce filtered projections, (4) filtered projections
are transferred back to host memory if necessary, (5) filtered projections
are transferred from host memory to device memory if necessary; (6) back-
projection is performed to produce a subvolume; (7) the subvolume is trans-
ferred to host memory, and (8) the subvolume in host memory is written to
the storage device.
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overcome limited device memory, as illustrated in Fig. 4.
From the figure, volume F is partitioned along the z-axis
into subvolumes F0,F1, . . . ,FZ/Z′−1, each with Z′ xy-slices,
whereas the filtered projections are partitioned into subsets
Q0,Q1, . . . ,QN/N′−1 with N′ projections each, thus indicat-
ing that the back-projection kernel is launched N/N′ times
for each subvolume Fk, where 0 ≤ k < Z/Z′ −1. Finally, the
produced subvolumes are transferred back to host memory,
and then written to the storage device in the volume output
stage.

Algorithm 1 shows the pseudocode of the back-
projection kernel, which generates subvolume Fk from sub-
set Qm of projections, where 0 ≤ k < Z/Z′ − 1 and 0 ≤
m < N/N′ − 1. This kernel assumes that each thread block
is in charge of reconstructing a slab along the z-axis, where
a thread with global index (x, y) computes F(x, y, z) for all
kZ′ ≤ z < (k + 1)Z′ (i.e., Z′ voxels along the z-axis); this
volume is stored in writable global memory, whereas pro-
jections are stored in textures to take advantage of hardware-

Fig. 4 Data decomposition scheme in which the back-projection kernel
is invoked for each pair 〈Qm,Fk〉 of subset Qm of projections and subvol-
ume Fk , where 0 ≤ m < N/N′ − 1 and 0 ≤ k < Z/Z′ − 1.

Algorithm 1: Back-projection kernel
Input : subset Qm of N′ filtered projections, projection subset index

m, and subvolume index k, where 0 ≤ m < N/N′ − 1 and
0 ≤ k < Z/Z′ − 1

Output: subvolume
Fk = {Fk(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, kZ′ ≤ z < (k + 1)Z′}
of Z′ slices

1 calculate responsible voxel coordinate (x, y) from thread index
and thread block index;

2 z← k × Z′ ; // first z coordinate in Fk

3 n← m × N′ ; // first projection index in Qm

4 for i← 0 to N′ − 1 do // for each projection

5 wi ← W(x, y, n + i); ui ← u(x, y, n + i);
vi ← v(x, y, z, n + i) ; // Eqs. (3)-(5)

6 end
7 for j← 0 to Z′ − 1 do // for each z-slice

8 t ← 0;
9 for i← 0 to N′ − 1 do // for each projection

10 vi ← v(x, y, z + j, n + i) ; // Eq. (6)

11 r ← Qn+i(ui, vi) ; // texture memory access

12 t ← t + wi × r ; // Eq. (2)

13 end
14 Fk(x, y, z + j)← Fk(x, y, z + j) + t ; // atomic write

to global memory

15 end

accelerated interpolation. Note that this workload distri-
bution scheme always achieves memory access coalescing
when writing voxel values, because threads in the same warp
access consecutive voxels on the same xy-plane, i.e., threads
are responsible for an angle-independent region of the vol-
ume. Similar to [22], atomic instructions are deployed to
maximize the collision-free write throughput of the volume
on line 14 of Algorithm 1.

4. Proposed Method

The main approach to optimizing GPU performance is to
locate the performance bottleneck, or resource constraint,
and then attempt to exchange it for the use of another re-
source. Applying this to the FDK algorithm, lines 11 and
14 of Algorithm 1 determine the performance of the back-
projection kernel, because an arithmetic instruction gener-
ally takes several clock cycles, whereas an off-chip memory
access takes hundreds of clock cycles. Therefore, reduc-
ing or hiding memory access latency is pivotal to maximiz-
ing the reconstruction performance on a GPU. Our solution
here is twofold: (1) maximize cache utilization to reduce
memory access latency on line 11 of the algorithm; and (2)
back-project multiple projections to reduce the number of
off-chip memory access on line 14 [15]. Therefore, in the
subsections below, we present the following three strategies
to systematically optimize the reconstruction procedure:

1. Cache-aware loop organization, which identifies the
best tradeoff point between the cache hit rate and the
number of off-chip memory accesses (Sect. 4.1)

2. A cache-aware data structure with a layered texture
(Sect. 4.2)

3. A pipelined strategy that includes I/O (Sect. 4.3)

4.1 Cache-Aware Loop Organization

As shown in Fig. 5, Eqs. (4) and (5) indicate that coordinates
(u(x, y, n), v(x, y, z, n)) are similar in that they are calculated

Fig. 5 Schematic illustrating texture access. In this example, a thread
block is responsible for producing the enclosed region in the volume. Given
filtered projections Qn, Qn+1, and Qn+2, warps in the given thread block ac-
cess homogeneous texture coordinates (un, vn), (un+1, vn+1) and (un+2, vn+2)
on the filtered projections, respectively (see Algorithm 1). This locality of
two-dimensional coordinates cannot extend to the locality of off-chip mem-
ory because successive projections are stored with a stride of UV , where
U and V are the horizontal and vertical resolutions of projections, respec-
tively.
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Fig. 6 Micro-benchmarks for evaluating texture access performance. Here, two access patterns were examined with U = V = 1024 and
1 ≤ L ≤ 64; the access patterns are (a) intra-layer-first and (b) inter-layer-first patterns. A single thread was used to fetch all texels. The
innermost loop of both patterns was unrolled for optimization.

from consecutive projection angles. In other words, a se-
ries of pixels (un, vn), (un+1, vn+1), . . . , (un+N′−1, vn+N′−1) are
intensively fetched from a small area of projections on line
11 of Algorithm 1; however, this high locality of coordi-
nates may not be extended to that of texture pixels (i.e., tex-
els) because successive projections are stored with a stride
of UV (Fig. 5). To handle this issue, Zinßer et al. [23] re-
versed the ji-loop of Algorithm 1 to form an i j-loop and
synchronized threads before proceeding to the next projec-
tion, j; further, they changed the inter-projection first loop
to an intra-projection first loop. As mentioned in Sect. 2,
this method improved the texture cache hit rate by creating
threads to simultaneously access the same projection within
the inner j-loop, but threads consume more registers to store
their responsible slabs, i.e., voxel values along the z-axis.
In more detail, variable t in Algorithm 1 must be extended
as variables t0, t1, . . . , tZ′−1 because they cannot be flushed
within the inner j-loop. Without this extension, the amount
of global memory access cannot be minimized. In this study,
we therefore adopt the original loop organization of the pre-
vious method [15] and present a data structure that is more
tolerant to the intra-projection first loop: three-dimensional
access spreading over different projections.

As mentioned above, the previous method [15] parti-
tions input projections into N/N′ subsets to back-project
each subset with a single kernel invocation. This multipli-
cation method reduces both the number of kernel invoca-
tions and the number of global memory writes by a factor
of N′, because N′ successive kernel executions are packed
into a single execution. More specifically, the previous
method [15] improves reconstruction performance by maxi-
mizing N′, which leads to efficient use of registers; however,
increasing N′ consumes more registers for variables wi, ui

and vi, which decreases the occupancy on the SM.
Large N′ also implies that threads can simultaneously

fetch pixels from different projections because they are ex-
ecuted in an SIMT manner in which different warps are al-
lowed to simultaneously process different lines in the kernel.
Therefore, excessive N′ decreases the L1/texture cache hit
rate, particularly for high-resolution images, because stride
UV between successive projections increases with image
resolution U × V . Note that synchronization is useful to
enforce warps keeping pace with other warps, which pre-
vents warps from accessing different projections; however,

CUDA prohibits inter-block synchronization during kernel
execution; thus, synchronization is not a perfect solution for
this issue.

In addition to the loop organization described above,
our method optimizes cache behavior by choosing the best
granularity and shape of thread blocks according to the char-
acteristics of memory access patterns. Because CUDA or-
ganizes threads in a three-level hierarchy composed of ele-
mentary threads, warps, and thread blocks, cache optimiza-
tion can be achieved at each of these three levels accord-
ingly. Sugimoto et al. [31] concluded that, with respect to
volume rendering applications, the most important level is
the warp level, because memory access transactions are is-
sued on a per-warp basis. Similarly, Okitsu et al. [15] con-
cluded that square-shaped thread blocks are suitable for the
back-projection kernel because warps are organized such
that back-projection performance is averaged for arbitrary
rotational angles. Refer to [15] for details.

4.2 Cache-Aware Data Structure with Layered Texture

Our proposed data structure is realized via a layered tex-
ture [12], which packs equally-sized textures of the same
type into a single object. Texels in a layered texture can be
accessed using floating-point coordinate (x, y) and a layer
specified by integer index l. Intra-layer interpolation can be
applied to the xy-plane, but inter-layer interpolation is not
available. Layered textures are ideal for processing multiple
textures of the same size and format in that they reduce the
overhead of texture access. Because its three-dimensional
locality has not been explicitly stated [12], we design a suite
of micro-benchmarks to analyze its performance advantages
with the memory access patterns of the FDK algorithm.

Figure 6 shows the pseudocode for the micro-
benchmarks, which run a single GPU thread to determine
whether a layered texture has been optimized for three-
dimensional locality; here, two access patterns are investi-
gated to compare the performance of a layered texture and
non-layered (i.e., naive two-dimensional) textures. The first
micro-benchmark, i.e., Fig. 6 (a), examines an intra-layer-
first pattern in which a thread finishes fetching all texels
from the current layer before accessing the next layer. Con-
versely, the other micro-benchmark, i.e., Fig. 6 (b), exam-
ines an inter-layer-first pattern in which a thread fetches tex-
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Fig. 7 Benchmark and profiling results for different loop organizations and data structures, showing (a) execution time, (b) L1/texture cache
hit rate, and (c) L2 cache hit rate. Here, intra-layer-first and inter-layer-first patterns were investigated with a layered texture and non-layered
(i.e., naive two-dimensional) textures.

els from all layers at the same coordinate (u, v) before going
to the next coordinate.

Figure 7 shows the timing and profiling results ob-
tained using the micro-benchmarks. As shown in the figure,
the inter-layer-first pattern on a layered texture achieved the
best performance with a higher L1/texture cache hit rate.
Consequently, we conclude that layered textures have three-
dimensional locality and are thereby optimized for three-
dimensional texture access. This performance character-
istic agrees with the memory access pattern of the back-
projection kernel, which is an inter-layer-first pattern as
shown on lines 7–15 of Algorithm 1.

According to our benchmark results, we decided to use
a layered texture with the inter-layer-first loop. We imple-
mented the layered texture with the texture object appli-
cation programming interface (API) introduced in the Ke-
pler architecture [32]. Compared to the legacy texture ref-
erence API, the texture object API simplifies the resulting
programming style and eliminates several restrictions [12].
For example, the texture object API does not require manual
binding and unbinding of texture references to memory ad-
dresses. Therefore, texture references can be used in a more
dynamic manner, whereas the texture reference API requires
texture references to be declared as static global variables.

4.3 Pipelined Strategy That Includes I/O

Similar to Blas et al. [24], our out-of-core pipelined strat-
egy decomposes not only computation steps but also file I/O
steps, namely steps (1) and (8) in Fig. 3 (b), thus overlap-
ping them with other steps. Such an I/O-included pipelining
strategy is extremely important for large amounts of data
that exceed not only device memory but also host memory.
Without this strategy, the entire reconstruction throughput is
bounded by file I/O time, even though the back-projection
procedure is significantly accelerated on the GPU.

Algorithm 2 presents pseudocode for our pipelined
FDK algorithm. As with the previous method [15], this al-
gorithm divides the input projections and output volume into

Algorithm 2: Fully pipelined FDK reconstruction
Input : set P = {P0, P1, . . . , PN−1} of raw projections
Output: volume F =

⋃Z/Z′−1
k=0 Fk

1 for k ← 0 to Z/Z′ −1 do in parallel // for each subvolume
2 for j← 0 to N/N′ − 1 do // for each projection

subset

3 if k == 0 then
4 for i← 0 to N′ − 1 do in parallel // for each

projection in projection subset

5 load raw projection PN′ j+i from the storage
device;

6 transfer PN′ j+i from host to device
asynchronously;

7 QN′ j+i ← RampFilteringKernel(PN′ j+i) ;
// Eq. (1)

8 transfer QN′ j+i from device to host
asynchronously;

9 end
10 set Q j = {QN′ j,QN′ j+1, . . . ,QN′ j+N′−1};
11 else
12 transfer

Q j = {QN′ j,QN′ j+1, . . . ,QN′ j+N′−1}
from host to device asynchronously ;
// Q j is double buffered on device

13 end
14 Fk ← back-projectionKernel(Q j, j, k) ;

// Algorithm 1

15 end
16 transfer Fk from device to host ; // Fk is double

buffered on host

17 store Fk to the storage device asynchronously;
18 end

N/N′ subsets and Z/Z′ subvolumes, respectively. The filter-
ing and back-projection procedures are then carried out for
each pair 〈Qm,Fk〉 of projection subset Qm and subvolume
Fk, where 0 ≤ m < N/N′−1 and 0 ≤ k < Z/Z′−1. Given the
limited capacity of device memory, filtered projections are
pushed back to host memory to save device memory con-
sumption for the subvolume to be generated (i.e., line 8 of
Algorithm 2). Further, filtered projections are reused to al-
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Table 2 Specifications of our experimental machine.

Item Specification
CPU Intel Core i7-4770K
Main memory capacity 32 GB
GPU NVIDIA GeForce GTX 980
Clock speed 1126 MHz (base), 1216 MHz (boost)
Texture fill rate 144.1 Gtexel/s (base), 155.6 Gtexel/s (boost)
Device memory capacity 4 GB
Device memory bandwidth 224.3 GB/s
Bus interface PCIe 3.0 ×16 bus
Storage Samsung 850 EVO SSD 500 GB
OS Fedora 22 64-bit
Compiler CUDA 7.5 and gcc 5.11
Compiler option -O3 -arch=compute 52 -code=compute 52 -Xcompiler -fopenmp -lgomp

Driver 352.55

Fig. 8 Shepp-Logan phantom [34] reconstructed by our experimental
machine.

low us to skip the filtering step for succeeding subvolumes
(i.e., line 12). Note that the buffers to be used for the back-
projection kernel are doubled to enable overlaps with other
steps (i.e., lines 12 and 16). Without these double-buffers,
overlaps cannot be achieved due to the data dependence that
exists between succeeding steps.

5. Experimental Results

We compared our proposed method with the previous
method [15] in terms of reconstruction time. All timing re-
sults were measured using the NVIDIA Visual Profiler [33].
Table 2 lists the specifications of our experimental machine.

In our experiments, we used three sets of the Shepp-
Logan phantom [34] at different resolutions: a small dataset
with U = V = X = Y = Z = 512, a medium dataset with
U = V = X = Y = Z = 1024, and a large dataset with
U = V = X = Y = Z = 2048, each with N = 1200
projections. The middle slice of the reconstructed volume
is shown in Fig. 8. Pixels in the projections and voxels in
the volumes consist of four bytes; thus, the small, medium,
and large datasets consumed 1.7 GB, 8.7 GB, and 50.8 GB
of memory, respectively. Therefore, the medium and large
datasets could not be entirely stored in host memory or de-
vice memory (Table 2).

5.1 Parameter Configuration

We conducted preliminary experiments to identify execu-
tion parameters that achieve the highest reconstruction per-
formance; these parameters included (1) the granularity and
shape of thread blocks, (2) projection subset size N′, and (3)
subvolume size Z′.

The appropriate shape of the thread blocks was firstly
investigated for the back-projection kernel. Figure 9 shows
the back-projection times, L1/texture cache hit rates, and L2
cache hit rates for all rotational angles with different thread
block shapes. As expected (see Sect. 4.1), square blocks of
16 × 16 threads achieved the highest performance with ap-
proximately 95% L1/texture cache hit rates. In contrast, the
lowest performance was obtained with a shape of 256 × 1
threads, which yielded a 50% L1/texture cache hit rate, ob-
served around rotational angles of 90 and 270 degrees. With
these rotational angles, resident warps in such non-squared
thread blocks accessed wide rows of projections, thereby
dropping the L1/texture cache hit rate.

Next, as shown in Fig. 10, we investigated back-
projection performance with different projection subset
sizes N′ and thread block sizes. As shown in Fig. 10 (a),
setting N′ = 20 and using blocks of 256 threads yielded
the best performance for the medium dataset. As for pro-
jection subset size N′, Figs. 10 (b) and 10 (c) show that there
was a tradeoff between the L1/texture cache hit rate and the
number of global memory accesses, as stated in Sect. 3.3.
The number of global memory accesses here is given by
8XYZN/N′ in bytes, because four-byte voxels are loaded
and stored once per kernel invocation.

Conversely, the previous method [15] improved recon-
struction performance by maximizing N′ on the G80 archi-
tecture [16]; thus, this previous idea must to be adapted to
the new Maxwell architecture accordingly. In other words,
the previous results partially agreed with our results when
N′ < 20, where the number of global memory accesses de-
creased with N′, but back-projection time increased slightly
with N′ when N′ > 20. As shown in Fig. 10 (b), ex-
cessive N′ increased memory access strides and degraded
L1/texture hit rates, which outweighed the performance gain
contributed by fewer kernel invocations and fewer write ac-
cesses.

As noted earlier, global memory access bypasses the
L1 caches; therefore, the L1/texture cache hit rate primar-
ily corresponds to texture memory performance (i.e., the
read throughput of the back-projection kernel). In summary,
an appropriate N′ can be selected according to the tradeoff
mentioned above. Similarly, we found that N′ = 20 and
N′ = 16 were the best sizes (i.e., the tradeoff point) for the
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Fig. 9 Back-projection performance and profiling results with different shapes of thread blocks and rotational angles: (a) back-projection
time, (b) L1/texture cache hit rate, and (c) L2 cache hit rate. These results were obtained with a thread block size of 256 for the medium dataset,
with N′ = 20 and Z′ = 512.

Fig. 10 Back-projection performance and profiling results with different projection subset sizes N′ and thread block sizes: (a) back-projection
times, (b) L1/texture cache hit rates, and (c) number of global memory accesses. These results were obtained with a medium dataset and
Z′ = 512.

small and large datasets, respectively.
Next, we discuss thread block size. As we decrease

the thread block size, more thread blocks can be dispatched
to each SM, which leads to higher occupancy; however,
a thread block size of 64 was too small for assigning a
square region to the SMs. In this case, we found that eight
thread blocks were resident on each SM. Although each
thread block was responsible for a square 8×8 region, these
eight squares appeared in a rectangular region because of
the cyclic assignment described in Sect. 3.2. Such a rect-
angular region cannot be efficiently back-projected from an
unfavorable angle, as we presented in Fig. 9, for the shape
of thread blocks. In contrast, the number of resident thread
blocks decreases as we increase the thread block size; how-
ever, a thread block size of 512 was too large to maximize
the projection subset size N′, because such a large thread
block consumes more registers. Execution for N′ > 8 failed
when using a thread block size of 1024. In summary, our
solution is to maximize the thread block size such that its
shape is kept as a square (i.e., a block of 16 × 16 threads).

Finally, we minimized subvolume size Z′ such that (1)
the off-chip memory could hold both a subvolume and a pro-
jection subset and (2) at least two subvolumes were gener-

ated for overlapping file I/O time (Z/Z′ ≥ 2). Note that for
all subvolumes, filtered projections must be transferred to
device memory. Consequently, the amount of data transfer
between CPU and GPU increases with Z/Z′. According to
this guideline, we used Z′ = 256, 512, and 128 for the small,
medium, and large datasets, respectively.

5.2 Breakdown Analysis

Using the best parameters identified above, we investigated
the impact of our data structure and that of our I/O-included
pipeline using different data sizes; results are summarized in
Table 3. Here, the layered texture efficiently improved back-
projection performance for the small and medium datasets,
achieving speedups of at least a factor of 1.44 over the given
baseline; however, speedup decreases to only a factor of
1.14 for the large dataset, which fetches texels from pro-
jections that are four times as large. In this case, data size
4UV of a projection reaches 16 MB, which immediately ex-
ceeds the L1/texture and L2 caches. For such large datasets,
our pipeline increased speedup from a factor of 1.14 to a
factor of 1.47 by realizing overlapped file I/O steps (1) and
(8), which consumed 31% of the overall time before such
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Table 3 Comparing the performance of our proposed method and previous method using different data sizes. The baseline corresponds
to Okitsu’s method [15] with the best parameters tuned for the Maxwell architecture. Further, “Both strategies” corresponds to our proposed
method.

Data size Step Baseline [15] Layered texture I/O pipeline Both strategies
Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup

Small (6) Backproj. 1.7 1.1 1.55 1.7 1.00 1.1 1.55
Total 5.4 4.6 1.17 4.3 1.26 3.9 1.38

Medium (6) Backproj. 13.1 9.1 1.44 13.1 1.00 9.1 1.44
Total 31.3 25.9 1.20 25.0 1.25 21.8 1.43

Large (6) Backproj. 112.9 98.4 1.14 113.0 1.00 98.3 1.14
Total 234.3 211.8 1.11 166.1 1.41 159.6 1.47

Table 4 Breakdown analysis of execution times for the large dataset. Here, “No pipeline” means that all steps were processed sequentially
with synchronous APIs, whereas the “Previous pipeline” and “Proposed pipeline” were processed asynchronously. These results were obtained
with the large dataset, with N′ = 16 and Z′ = 256.

Step No pipeline Previous pipeline [15] Proposed pipeline
(1) T1: Storage→ host 36.9 — —
(2) T2: Host→ device 3.2 — —
(3) T3: Ramp filtering 16.3 — —
(4) T4: Device→ host 3.2 — —
(5) T5: Host→ device 55.1 — —
(6) T6: Back-projection 98.4 — —
(7) T7: Device→ host 5.4 — —
(8) T8: Host→ storage 46.5 — —
(1)–(4) 59.6 58.1 38.5
(5)–(8) 205.4 153.7 121.1
Total 265.5 211.8 159.6

overlapping was achieved. Thus, our I/O-included pipeline
complements cache-aware back-projection, thereby demon-
strating large speedups for both small and large datasets.

Next, we investigated the breakdown of reconstruction
time for the large dataset, with our results summarized in
Table 4. We evaluated the impact of our pipelined strat-
egy; thus, all comparative methods used the same cache-
aware kernel during measurements. In addition, a non-
pipelined version deployed synchronous APIs, so that the
sum of the breakdowns never equaled the execution times
of the pipelined versions, which deployed asynchronous
APIs. The previous method reduced the execution time from
265.5 s to 211.8 s, and our proposed method further reduced
the execution time to 159.6 s, achieving speedups of 1.66
and 1.33 times the non-pipelined method and the previous
method, respectively. Thus, pipelining must be applied not
only to the filtering and back-projection steps (2)–(7) but
also to file I/O steps (1) and (8).

With respect to the filtering stage, i.e., steps (1)–(4), the
previous method had little advantage over the non-pipelined
implementation in that only data transfer stages (2) and (3)
were partially overlapped with filtering stage (3). In con-
trast, our proposed method realized a full overlap, including
file I/O stage (1), such that the execution time was reduced
from 59.6 s to 38.5 s.

With respect to the back-projection stage, i.e., steps
(5)–(8), the previous method overlapped step (5) with step
(6) such that the corresponding execution time was reduced
from 205.4 s to 153.7 s. Our method further realized an
overlap of steps (7) and (8), thereby reducing the execution
time to 121.1 s. Note that step (8) for the last subvolume
cannot be overlapped with other steps. Similarly, step (1) for
the first subvolume cannot be overlapped with other steps.

5.3 Efficiency Analysis

To analyze the performance bottleneck of our method,
we measured arithmetic performance, L1/texture cache
throughput, L2 cache texture load throughput, and texture
fill rate using the NVIDIA Visual Profiler; results are shown
in Fig. 11. According to Eq. (2), each voxel requires one
pixel per projection; thus, the effective texture fill rate can
be given by NXYZ/T6, where T6 is the back-projection time.
The peak texture fill rate was derived according to a boosted
clock speed because the clock speed was boosted during
back-projection.

Our results indicate three key findings. First, Fig. 11 (d)
implies that the texture fill rate determined reconstruc-
tion performance for the small and medium datasets. The
Maxwell architecture has eight texture units devoted to each
SM; thus, 16 CUDA cores share a single texture unit. Given
these limited resources, the effective texture fill rates were
limited to approximately 141.2 Gtexel/s, which is only 9.3%
lower than the peak (boosted) value of 155.6 Gtexel/s. These
effective values were close to the peak (base) value of
144.1 Gtexel/s; thus, we conclude that our back-projection
kernel is highly optimized for the Maxwell architecture. As
for the large dataset, we determined that the average L2 tex-
ture read cache hit rate decreased to 55.8% due to the in-
creased projection size, which decreased the effective tex-
ture fill rate to 104.9 Gtexel/s.

Second, our cache-aware method and the rich caching
mechanism of the Maxwell architecture moved the perfor-
mance bottleneck from the off-chip memory bandwidth to
the texture fill rate. As shown in Fig. 11 (c), the effective
throughput was approximately one-quarter of the theoretical
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Fig. 11 Profiling results for different data sizes: (a) arithmetic performance in GFLOPS, (b) L1/texture cache throughput, (c) L2 cache
texture load throughput, and (d) effective texture fill rate. FMA, ADD, and MISC in (a) refer to fused multiply-add [12], addition, and other
instructions, respectively. The horizontal lines in (c) and (d) are peak memory bandwidth and peak (boosted) texture fill rate, respectively, with
the latter derived according to the boosted clock speed presented in Table 2.

peak value, which indicates that off-chip memory accesses
do not limit back-projection performance on the Maxwell
architecture. These results were not observed in the previ-
ous study [15], which concluded that off-chip memory ac-
cess was the performance bottleneck of the back-projection
kernel on the G80 architecture.

Third, reconstruction performance for the large dataset
was sacrificed due to limited device memory. As compared
to the medium dataset, the large dataset consisted of four
times larger xy-slices, which decreased the subvolume size
Z′ from 512 to 128. This decrease in Z′ led to more kernel
executions and reduced the amount of memory accesses per
warp, i.e., 32N′Z′ in bytes, from 1.25 MB to 0.25 MB. An
alternative solution for increasing Z′ is to partition the vol-
ume along the x- or y-plane instead of the z-plane; however,
this solution requires recombining the volume after recon-
struction. Such a post-processing task will likely slow the
I/O-included pipeline.

6. Conclusions

In this paper, we presented a cache-aware optimization
method to accelerate out-of-core cone beam reconstruction
on a GPU. Our proposed method extended the previous
method described in [15] and accelerated the FDK algorithm
via three key strategies, i.e., an improved loop organization
strategy, an improved data structure, and an I/O-included
pipeline. We also presented tuning guidelines for determin-
ing the best configuration for the granularity and shape of
thread blocks, as well as the projection subset size and sub-
volume size, i.e., the granularity of I/O data to be streamed
through the pipeline.

Our experimental results showed a tradeoff between
the texture cache hit rate and the number of off-chip mem-
ory accesses. We also found that it took 159.6 s on a
GeForce GTX 980 to reconstruct a 20483-voxel volume
from 1200 20482-pixel projections, consuming 50.8 GB
of memory. This reconstruction performance is approxi-
mately 1.47 times higher than that achieved by the previ-
ous method [15]. Concerning GPU optimization, we found
that it is not necessarily more efficient to compact as many
tasks as possible into kernel execution to decrease kernel
executions. Instead, proper tuning is required to identify

the optimum number of tasks that will minimize the over-
all time required. With the aid of texture interpolation
and cache-aware strategies, our presented GPU implementa-
tion achieved performance advantages over other computing
platforms.

Our future work includes enabling our method to run
on a multi-GPU machine to achieve further acceleration.
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