
Towards Automating Multi-dimensional Data Decomposition for
Executing a Single-GPU Code on a Multi-GPU System

Ryotaro Sakai, Fumihiko Ino, and Kenichi Hagihara
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Email: {r-sakai, ino}@ist.osaka-u.ac.jp

Abstract—In this paper, we present a data decomposition
method for multi-dimensional data, aiming at realizing multi
graphics processing unit (GPU) acceleration of a compute uni-
fied device architecture (CUDA) code written for a single GPU.
Our multi-dimensional method extends a previous method that
deals with one-dimensional (1-D) data. The method performs
a sample run of selected GPU threads to decompose large
data into small segments, which avoid exhaustion of GPU
memory. As compared with the previous method, our multi-
dimensional method produces smaller segments, so that it
saves GPU memory consumption and reduces the amount of
CPU-GPU data transfer. As a result of experiments using
matrix multiplication, the presented method consumed less
GPU memory compared with that of the previous method,
and thereby successfully processed 29 times larger matrices
as long as the matrices fit into CPU memory. However, we
found that index transformation needed for multi-dimensional
decomposition dropped the effective performance by 28%.

1. Introduction

The graphics processing unit (GPU) [1], which is capa-
ble of running millions of parallel threads, is an accelerator
device for graphics applications. This emerging device typ-
ically achieves a 10 times speedup over the CPU not only
for traditional graphics applications [2] but also for general-
purpose applications [3] in the fields of fluid dynamics,
machine learning, and bioinformatics [4]. One drawback of
this accelerator device is that the capacity of GPU memory
is at most 16 GB, which restricts the problem size to be
handled on the device. Consequently, multi-GPU systems
are usually deployed to tackle the same problem size as
that solved by CPU-based implementations.

In general, multi-GPU applications require more devel-
opment efforts than single-GPU applications. For example,
the compute unified device architecture (CUDA) [5], or a
widely used framework for the NVIDIA GPU [1], requires
application developers to largely rewrite their single-GPU
code [6]; they must find out the best data decomposition
scheme that maximizes the performance on the device.
Moreover, developers have to transform the indexing scheme
between the original data and the decomposed data, which
usually have different indexes due to data decomposition.

Thus, multi-GPU programming is more complicated and
time consuming than single-GPU programming.

To facilitate multi-GPU programming, Kim et al. [7]
presented a runtime framework that realized a single com-
pute image in OpenCL [8] for multiple GPUs. Their frame-
work assumes that the input single-GPU code satisfies a
constraint but there is no need to modify the code for multi-
GPU execution. To automate data decomposition, their run-
time performs a sample run of the GPU code (i.e., the kernel
function), which estimates the memory region that will be
accessed by GPU threads. This sample run is conducted
on the CPU before invoking the GPU code; the constraint
mentioned above reduces the number of GPU threads to be
simulated for estimating the memory access behavior of the
entire GPU thread. According to this estimation, the data
are decomposed into smaller segments.

Although this estimation is useful for automating data
decomposition, the memory access region is specified with
a one-dimensional (1-D) addressing scheme, as depicted
in Fig. 1. With this 1-D scheme, segments for multi-
dimensional data can include redundant elements that will
not be accessed during execution. For example, the segment
in Fig. 1 includes unaccessed elements in several columns
because its region is specified only along the vertical axis. A
2-D addressing scheme, which restricts columns and rows,
is necessary to exclude such unaccessed columns from the
segment.

In this paper, we present a data decomposition method
for multi-dimensional data that cannot be entirely stored
in the GPU memory. The presented method minimizes
redundant elements in produced segments. To achieve this,
the method extends the previous method [7] such that it
specifies the memory region with a multi-dimensional ad-
dressing scheme where the necessary region is restricted
with every dimension that composes the data. We also
show that a naive extension of the previous method fails
to correctly decompose multi-dimensional data. The key
idea for obtaining correct decomposition is precomputation
of specific operations, which temporarily replaces variables
with constant values before a sample run of the GPU code.
Similar to the previous method [7], our method is applicable
to arbitrary kernels in which memory references are given
as affine functions of the thread and thread block indexes.

The paper is structured as follows. Section 2 introduces

Accessed

Not

accessed

x
L

x
U

Figure 1. Memory access region estimated by the previous method [7],
which deploys a 1-D addressing scheme. Blue columns in a 2-D array
are accessed during execution, whereas the estimated region is given
by elements enclosed with red lines. In this case, the estimated region,
specified with two 1-D addresses Lx and Ux, includes redundant elements
that will not be accessed.

related studies on data decomposition methods for GPU
codes. Section 3 summarizes the previous method [7] and
some issues that must be solved for multi-dimensional data
decomposition. Section 4 then presents our method and Sec-
tion 5 shows some experimental results. Finally, Section 6
summarizes the paper with future work.

2. Related Work

Müller et al. presented the CUDA system architecture
(CUDASA) framework [9], capable of assisting application
developers in developing multi-node, multi-GPU systems.
This framework extended the hierarchies of CUDA threads
and memories to allow a CUDA-like code to run on a multi-
node, multi-GPU system. Kim et al. developed the SnuCL
runtime system [10] capable of running multi-GPU code on
a multi-node system with hiding inter-node communication.
These frameworks significantly reduced development efforts
needed for load balancing over multiple devices. However,
application developers have to explicitly decompose large
data in their application code.

As for automated data decomposition, Luk et al. pro-
posed the Qilin system [11], which automated data decom-
position by applying data dependence analysis to the GPU
code. Similarly, Ji et al. [12] developed a runtime library,
named Region-based Software Virtual Memory (RSVM),
which hid data decomposition from application developers.
These studies automated data decomposition but enforced
application developers to rewrite their code with unique pro-
gramming models and application programming interfaces
(APIs). Such unique description increases programming ef-
forts because code modification is needed to (1) transfer data
between the CPU and GPU, (2) invoke the GPU code, and
(3) access variables in the GPU code.

To hide data decomposition from application developers,
Lee et al. [13], [14] presented a programming framework
that can run a single-GPU code on a multi-GPU system.
Similar to Kim’s decomposition method [7], their framework
analyzed the memory access behavior to automate data
decomposition. The difference over Kim’s method is that
the entire thread is examined, so that various applications

can be applied without any constraint; however, the analysis
overhead, which is larger than Kim’s method, is an issue that
must be resolved for large-scale applications.

Some researchers [15], [16] tried static approaches to run
a single-GPU code on a multi-GPU system. For example,
Cabezas et al. [15] presented a compiler analysis approach
that automated parallelization of kernels in shared-memory
multi-GPU nodes. As compared with Lee’s framework [14],
their approach increased the maximum problem size that can
be executed on a multi-GPU system. However, these static
approaches assume that the data size is smaller than the
total capacity of GPU memories. In contrast, our sampling
approach can deal with out-of-core data, which cannot be
entirely stored in GPU memories.

The CUDA provides some functionalities to facilitate
large-scale computation on GPUs. Unified memory [5] pro-
vides a shared memory space to hide data transfer be-
tween the CPU and GPU. Mapped memory [5] allows GPU
threads to directly refer data stored on the CPU memory.
These functionalities are useful to write an application code
without explicit data decomposition. However, the achieved
performance is usually not satisfactory due to the limitation
of static analysis; on-demand data transfer between the CPU
and GPU degrades the performance.

Directive-based programming, such as OpenMP [17] and
OpenACC [18], is an attractive approach to port CPU code
onto a parallel machine with low efforts. In this approach,
application developers have to add some compiler directives
into their sequential code, which is then compiled with a
parallelization compiler. Anonymous et al. [19] extended
OpenACC directives to realize GPU-based out-of-core sten-
cil computation accelerated with a software pipeline. Open-
MPC [20] extended the OpenMP specification such that
an OpenMP-like code can be accelerated on a CUDA-
compatible GPU. Sabne et al. then automated pipelined
execution of large data for an OpenMPC code. These
directive-based approaches minimize programming efforts
but some device-specific optimization cannot be applied due
to their high-level description. By contrast, our CUDA-based
approach allows device-specific optimization to be explicitly
described in the code.

3. Kim’s Previous Method

Given an OpenCL code [8] written for a single-GPU sys-
tem, the previous method [7] accelerates the code on a multi-
GPU system. The method automates data decomposition by
assuming that the input code satisfies a certain constraint.
Figure 2 shows a processing flow of the previous method.
The method performs a sample run of a GPU code, namely
a kernel function, before executing the code on the GPU.
This sample run on the CPU estimates the memory access
region for every task. A task here consists of computation
assigned to a set of work-groups (i.e., thread blocks in the
CUDA context), and different tasks are data-independent
based on the constraint of the OpenCL programming model.
According to this estimated region, large data are decom-
posed into small segments, each necessary for an execution

Data decomposition

Data transfer from

CPU to GPU

GPU code

execution

Data transfer from

GPU to CPU

Time

Sample run

Finalization

CPU GPU1 GPU2

Figure 2. Processing flow of the previous system [7].

of a task. Thus, the segment size depends on the number of
work-groups associated with a task. The generated segments
are then transferred from CPU memory to GPU memory
to accelerate their corresponding tasks on the GPU. Data-
independent tasks are assigned to devices with a flexible
task scheduling mechanism.

Note that the constraint assumed above is necessary to
reduce the number of GPU threads to be sampled before
data decomposition. Suppose here that array A is to be
decomposed into segments, and its n-th element A[n] is
accessed in the GPU code, as shown in Fig. 3. Then, the
constraint is that the index n of the target array is given
by an affine function of the work-item ID (l1, l2, l3) and
the work-group ID (l4, l5, l6) (i.e., the thread index and the
thread block index, respectively, in the CUDA context). That
is,

f(l1, l2, . . . , l6) =

6∑
i=0

(ai × li) , (1)

where ai (0 ≤ i ≤ 6) is a constant value common to all
GPU threads, and l0 = 1 is a dummy variable that simplifies
description. For an example of Fig. 3, we have a0 = 0,
a1 = 1, a2 = s, a3 = w, a4 = sw, a5 = wh, and a6 = swh,
each confirmed as a constant value when invoking the GPU
code. In this case, Theorem 1 can be applied to Eq. (1).

Theorem 1. Given affine function f(l1, l2, . . . , ln) of n
variables, its least upper bound (greatest lower bound) can
be obtained when all l1, l2, . . . , ln get the maximum values
(minimum values, respectively).

Therefore, for the GPU code that satisfies the constraint
mentioned above, the memory access region of the en-
tire thread can be estimated by performing a sample run
of selected threads that have the minimum/maximum ID
l1, l2, . . . , l6; there is no need to sample all threads.

Figure 4 shows a sampling code generated for the GPU
code presented in Fig. 3. This code runs on a CPU to
estimate the memory access region for every task. The
sampling code records the memory access region of the
threads specified with their work-item ID and the work-
group ID, _l1, _l2, . . ., _l6.

1 __kernel void func(__global float* A, __global float* B,
2 float d, int s, int w, int h)
3 {
4 int i = get_local_id(0) + get_group_id(0)*s;
5 int j = get_local_id(1) + get_group_id(1)*s;
6 int k = get_local_id(2) + get_group_id(2)*s;
7 int n = i + j*w + k*w*h;
8
9 B[n] = d * A[n];

10 }

Figure 3. An example of GPU code.

1 void _samp_func(int _l1, int _l2, int _l3,
2 int _l4, int _l5, int _l6,
3 float* A, float* B,
4 float d, int s, int w, int h)
5 {
6 int i = _l1 + _l4*s;
7 int j = _l2 + _l5*s;
8 int k = _l3 + _l6*s;
9 int n = i + j*w + k*w*h;

10
11 ACCESS_READ(A, n); ACCESS_WRITE(B, n);
12 }

Figure 4. An example of sampling code generated for the GPU code
presented in Fig. 3.

As shown in Fig. 1, data segments of the previ-
ous method can include redundant elements for multi-
dimensional data because it specifies the memory region
with a 1-D addressing scheme. Such redundant elements
not only waste the GPU memory but also increase the
CPU-GPU data transfer time, which can degrade the entire
performance.

3.1. Issues for Multi-Dimensional Decomposition

One can easily apply the previous method to multi-
dimensional data by mapping a 1-D memory address,
namely the output of the previous method, to a multi-
dimensional memory address. That is, as shown in Fig. 5(a),
a data segment can be produced as a bounding rectangle
whose corners are specified with the least upper bounds,
Ux and Uy, and the greatest lower bounds, Lx and Ly, for
each dimension (x and y).

Given an element in a 3-D array of size X ×Y ×Z, its
1-D address f(l1, l2, . . . , l6), where 0 ≤ f(l1, l2, . . . , l6) <
XY Z, can be mapped to a 3-D address (gx, gy, gz), where
0 ≤ gx < X , 0 ≤ gy < Y , and 0 ≤ gz < Z, as follows.

gx(l1, l2, . . . , l6) = f(l1, l2, . . . , l6)%X, (2)
gy(l1, l2, . . . , l6) = f(l1, l2, . . . , l6) /X%Y, (3)
gz(l1, l2, . . . , l6) = f(l1, l2, . . . , l6) /X /Y, (4)

where gx, gy, and gz represent the address in the x-axis,
that in the y-axis, and that in the z-axis, respectively, and
% is a modulo operator.

Although this mapping approach specifies the memory
region with a 3-D address, the modulo operations in Eqs. (2)
and (3) do not satisfy the constraint required for Theo-
rem 1. That is, neither gx nor gy is an affine function of

X

Y

x

y

xL xU

yL

yU

(a)

X

Y

x

y

xL xU

yL

yU

(b)

XU x%

X

Y

x

y

xL

yL

yU

(c)

Figure 5. Estimating the memory access region for multi-dimensional data. (a) The estimated region is specified with four corners, corresponding to
the least upper bounds, Ux and Uy , and the greatest lower bounds, Lx and Ly , for each dimension (x and y). (b) A naive extension results in wrong
estimation, whereas (c) the proposed extension produces correct estimation.

l1, l2, . . . , l6. Owing to this failure, the mapping approach re-
sults in an incorrect decomposition, as depicted in Fig. 5(b);
in this example, the accessed region consists of two pieces,
one existing in the left-most columns and the other existing
in the right-most columns, but the estimated region excludes
them. Thus, another approach is necessary to obtain a correct
decomposition for multi-dimensional data.

4. Proposed Data Decomposition Method

Our data decomposition method takes three inputs to
produce data segments for multi-GPU execution: (1) a
single-GPU code, (2) the size X × Y × Z of the array to
be decomposed, and (3) the number of decompositions (i.e.,
segments). Similar to the previous method [7], we assume
that the input code satisfies the constraint mentioned in
Section 3.

4.1. Estimating Memory Access Region for Multi-
Dimensional Data

The key idea for correct estimation is to regard sizes
X and Y in Eqs. (2) and (3) as constant values in the
GPU code. In general, these sizes are coded as variables
that can be changed at runtime, but they are usually fixed
when invoking the GPU code from the CPU code. This
interpretation eliminates the modulo operations by precom-
putation, which can be conducted before invoking the GPU
code. Consequently, Eqs. (2)–(4) can be regarded as affine
functions as follows.

gx(l1, l2, . . . , l6) =
6∑

i=0

((ai %X)× li) , (5)

gy(l1, l2, . . . , l6) =

6∑
i=0

((ai /X%Y)× li) , (6)

gz(l1, l2, . . . , l6) =
6∑

i=0

((ai /X /Y)× li) . (7)

For example, our precomputation replaces ai %X in Eq. (5)
with a constant value, namely a coefficient of an affine

X

Y

x

y

z

),,(zyx ooo

Z
U

V

W

)(21 ff

Figure 6. The coordinate systems for a 3-D array before and after decom-
position. An element at f1 in the xyz-coordinate system corresponds to
that at f2 in the uvw-coordinate system.

function. Notice that Eqs. (5) and (6) are not equivalent to
Eqs. (2) and (3), respectively; for example, Eq. (2) implies
0 ≤ gx < X , which is not always true in Eq. (5). When
gx ≤ X , our method detects multiple pieces in a segment,
which we discuss below.

For an example of Fig. 5(c), where the memory access
region is separated into two pieces, the proposed method
detects multiple pieces in a segment. This detection can be
done as follows. Let Ux and Lx be the least upper bound and
the greatest lower bound along the x-axis, respectively. The
accessed region then consists of a single piece if Ux < X;
elements in range [Lx, Ux] are regarded as a segment.
Otherwise, two pieces existing in ranges [0, Ux%X] and
[Lx, X − 1] can be merged into a segment. Thus, the
proposed method successfully estimates the correct region
for arbitrary cases that satisfy the constraint.

4.2. Index Transformation

In general, data decomposition reduces the memory us-
age but it changes the indexing scheme after decomposition.
Let C1 be the original indexing scheme defined over the
entire data. Let C2 also be the indexing scheme defined for
a separated segment. The GPU code then must be correctly
translated with mapping C1 to C2.

Figure 6 shows a geometric relation between the original
3-D array and its separated segment. A rectangular enclosed
with lines represents the original array of size X × Y × Z,

TABLE 1. EXPERIMENTAL ENVIRONMENT.

Item Specification
CPU Intel Xeon E5-2680v2
CPU memory capacity 512 GB
GPU Two NVIDIA Tesla K40
GPU memory capacity 12 GB per GPU
OS Ubuntu 14.04
Compiler gcc 4.8.4
CUDA 6.5

whereas that enclosed with dashed lines represents a seg-
mented array of size U × V ×W . A 1-D memory address
f1 in the original scheme C1, where 0 ≤ f1 < XY Z,
then can be transformed to a 1-D memory address f2 in
the decomposed scheme C2, where 0 ≤ f2 < UVW , as
follows.

f2 = (f1 %X − ox)

+(f1 /X%Y − oy)× U

+(f1 /X /Y − oz)× U × V, (8)

where (ox, oy, oz) (0 ≤ ox < X, 0 ≤ oy < Y, 0 ≤ oz < Z)
is a 3-D coordinate of the original array that corresponds to
the origin of the segment (i.e., decomposed array).

5. Experimental Results

We compared the proposed method with the previous
method [7] in terms of the GPU memory usage and the
effective performance. To do this, we applied both methods
to matrix multiplication code of the CUDA software de-
velopment kit (SDK) and measured their performance on a
dual-GPU system (see Table 1). The comparable codes are
summarized as follows.

1) The original single-GPU code. This code computes
matrix multiplication C = A × B for matrix size
N ×N .

2) The previous multi-GPU code. This code was gen-
erated by the previous method, which deployed a
1-D addressing scheme. As depicted in Fig. 7(a),
matrices A and C were segmented with a 1-D block
scheme. Note that matrix B cannot be segmented
because columns in B are necessary to compute a
row block in C.

3) The proposed multi-GPU code. This code was gen-
erated by the proposed method. All matrices A, B,
and C were segmented with a 2-D block scheme
(Fig. 7(b)).

Note that the original code can multiply matrices as long
as the matrices can be stored entirely on GPU memory. By
contrast, this limitation is relaxed by data decomposition,
which allows matrices to be larger than the capacity of GPU
memory. However, both the proposed and previous methods
assume that the entire matrix is stored in CPU memory.
In the following discussion, let M be the number of data
decompositions (i.e., segments). We assume that M is a
square of an arbitrary integer.

M

(a)

M

M

(b)

Figure 7. Data decomposition for matrix multiplication by the previous
method and our method. (a) 1-D block scheme and (b) 2-D block scheme.
M represents the number of decompositions.

The proposed and previous codes were accelerated with
a software pipeline that overlapped CPU-GPU data transfer
with GPU code execution. To realize this, both codes were
implemented with an asynchronous CUDA APIs and double
buffers; the buffer size was set to 6 GB per GPU, namely
half of the capacity of GPU memory. Generated tasks were
assigned to devices in a cyclic manner to achieve load
balancing.

5.1. GPU Memory Usage

We analytically evaluated the proposed method with re-
spect to the GPU memory usage estimated from the segment
size. Recall here that the previous method fully included
matrix B into segments. For a matrix of size N × N , the
segment size of the previous method is given by

4×N2 ×
(

1

M
+ 1 +

1

M

)
= 4N2M + 2

M
, (9)

while that of the proposed method is given by

4×N2 ×

(√
M

M
+

√
M

M
+

1

M

)
= 4N2 2

√
M + 1

M
. (10)

Note that matrix elements were stored in float arrays and
the segment sizes were given in bytes.

According to Eqs. (9) and (10), we investigated how
the number M of decompositions affected the segment size.
Figure 8 shows the relation between M and the segment size
for a fixed matrix size of 40, 000 × 40, 000. Without data
decomposition, the matrices required 19.2 GB of memory
space, so that the original CUDA SDK code failed to run
due to the exhaustion of GPU memory.

By contrast, the proposed method successfully reduced
the segment size from 19.2 GB to 0.8 GB by increasing
M with a 2-D block scheme. Consequently, our method
allows large matrices to be multiplied correctly as long as
they are small enough for CPU memory. For example, for
large matrices of size 40, 000 × 40, 000, M = 9 segments
are sufficient to reduce the segment size to approximately
5 GB, which can be stored in a double buffer.

Similarly, the previous method reduced the segment size,
but it consumed 6.4 GB of memory space. As we mentioned

0

5

10

15

20

25

0 50 100 150 200 250 300

S
e
g
m

e
n

t
si

ze
 (

G
B

)

Number M of decompositions

Previous

Proposed

Figure 8. Segment size for different numbers of decompositions. The matrix
size was set to N ×N = 40, 000× 40, 000.

TABLE 2. MATRIX SIZE N ×N AND ITS MEMORY REQUIREMENT
WITHOUT DATA DECOMPOSITION.

Code Maximum matrix size N Memory space (GB)
Original 31,584 11
Previous [7] 38,496 17
Proposed 207,680 482

above, the 1-D block scheme requires the entire matrix
B, and thereby the segment size is at least 4N2 in bytes.
Therefore, for large matrices of size 40, 000 × 40, 000, the
segment size was larger than the buffer size of 6 GB. In this
case, multi-GPU execution failed for arbitrary M .

5.2. Maximum Matrix Size

We next investigated the maximum matrix size that could
be successfully processed on the experimental machine (Ta-
ble 2). Table 2 clearly shows that the reduced segment size
increased the maximum matrix size. The original single-
GPU code resulted in an execution failure if the matrices
A, B, and C consumed approximately 11 GB of memory
space, which was close to the capacity of GPU memory;
the maximum matrix size reached 31, 584 × 31, 584. The
proposed method relaxed this limitation to the capacity of
CPU memory (instead of that of GPU memory), and thereby
the maximum matrix size reached 207, 680×207, 680, which
was 44 times larger than the original size; a memory space
of 482 GB, which was close to the capacity of CPU memory,
was consumed for this problem size.

By contrast, the previous method increased the maxi-
mum matrix size to 38, 496×38, 496, which was 49% larger
than the original size but was 1/29 of that achieved by the
proposed method. According to Eq. (9), the segment size
was approximately 6 GB for this size, which was equivalent
to the buffer size. Thus, the 2-D block scheme rather than
the 1-D block scheme is necessary to take advantage of data
decomposed matrix multiplication.

Recall that compiler-based methods [15], [16] assume
that the entire data can fit into the total capacity of GPU
memories. For example, AMGE [15] running on four Tesla
K40 GPUs processed the maximum matrix size of 48, 900×
48, 900, which was 1/18 of that processed with our method.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

E
ff

ec
ti

v
e

p
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

Memory space (GB)

Previous (2 GPU) Proposed (2 GPU)

Previous (1 GPU) Proposed (1 GPU)

Original (1 GPU)

Figure 9. Effective performance of matrix multiplication.

5.3. Effective Performance

We measured the effective performance of each code
with varying the matrix size N × N from 6400 × 6400
to 64, 000 × 64, 000. Figure 9 shows the effective perfor-
mance in giga floating point number operations per second
(GFLOPS); we varied the number M of decompositions
from 12 to 162 to find the highest performance given by
2N3/T , where T is the best execution time, including CPU-
GPU data transfer time.

By comparing single-GPU performance, the previous
method was slightly faster than the original method. By
contrast, the proposed method was 28% slower than the
previous method for relatively small matrices. A similar
performance behavior was observed for dual-GPU perfor-
mance (27% slowdown). This performance degradation was
due to the overhead needed for index transformation. As
we mentioned in Section 4.2, the proposed method trans-
forms indexes at every memory access in the GPU code. A
similar transformation is needed for the previous method,
but only one subtraction operation is sufficient for the 1-D
block scheme. By contrast, the 2-D block scheme requires
13 operations, containing modulo, division, multiplication,
and subtraction operations, as presented in Eq. (8). These
operations increased the kernel execution time as compared
with that of the previous method.

Figure 9 also shows that the effective performance was
stable for different matrix sizes even though the required
memory space exceeded the capacity of GPU memory. As
compared with the proposed method, the previous method
consumed more GPU memory and spent longer time to
transfer segments between the CPU and GPU, but this
drawback was not clearly observed; the software pipeline
successfully overlapped CPU-GPU data transfer with kernel
execution, and moreover, the kernel execution rather than
CPU-GPU data transfer was the performance bottleneck,
which determined the entire performance. Therefore, the
drawback of the previous method was not a critical issue
for matrix multiplication.

Note that the effective performance slightly dropped for
small matrices of size 6400× 6400; a load imbalance issue
occurred for such small matrices, which limit the number M
of segments. For example, both the proposed and previous
methods dropped the performance by 10% when M = 3 on

dual-GPU execution. Thus, finding the appropriate number
M of decompositions is the key to maximize the effective
performance.

The speedup of dual-GPU execution over single-GPU
execution was approximately a factor of two for both the
proposed and previous methods. In general, the overhead
of data decomposition increases with the number M of
decompositions, but such performance degradation could
not be observed in Fig. 9. For example, for matrices of
size 32, 000 × 32, 000, the proposed method achieved the
maximum performance of 535 GFLOPS on two GPUs when
M = 6, which was close to 531 GFLOPS obtained when
M = 16. Consequently, we think that matrix multiplication
can scale its performance with the number of GPUs as long
as the effective bandwidth of the PCIe bus increases with
the number of GPUs.

6. Conclusion

In this paper, we presented a data decomposition method
for multi-dimensional data, aiming at accelerating a single-
GPU code on a multi-GPU system. Our method extends a
previous method [7], namely a data decomposition method
for 1-D data, such that multi-dimensional data can be
decomposed into small segments. Similar to the previous
method, our method produces data segments by performing
a sample run of selected GPU threads, assuming that the
indexes of accessed arrays are given by affine functions of
thread and thread block indexes. To realize this, our method
precomputes and eliminates modulo operations, which avoid
array indexes from being interpreted as affine functions. This
precomputation correctly produces smaller segments, which
not only save the GPU memory usage but also reduce CPU-
GPU data transfer time.

In experiments, we evaluated the presented and previous
methods in terms of the memory usage and the effective
performance on a dual-GPU system. To do so, we manually
applied our method to matrix multiplication code of the
CUDA SDK. As compared with the previous method, our
method successfully processed 29 times larger matrices,
which can be entirely stored in CPU memory but cannot
fit into the GPU memory. However, our multi-dimensional
method made index transformation more complicated than
the previous 1-D method, and thus, the transformation over-
head dropped the entire performance by 28%. In summary,
our method is useful for dealing with large data that cannot
be naively processed due to the exhaustion of GPU memory.

Future work includes automated code generation.

Acknowledgments

This study was supported in part by the Japan Society
for the Promotion of Science KAKENHI Grant Numbers
15K12008, 15H01687, 16H02801, and the Japan Science
and Technology Agency CREST program, “An Evolution-
ary Approach to Construction of a Software Development
Environment for Massively-Parallel Computing Systems.”

We are also grateful to the anonymous reviewers for their
valuable comments.

References
[1] NVIDIA Corporation, “NVIDIA GeForce GTX 980,” Nov.

2014. [Online]. Available: http://international.download.nvidia.com/
geforce-com/international/pdfs/GeForce GTX 980 Whitepaper
FINAL.PDF

[2] Y. Sugimoto, F. Ino, and K. Hagihara, “Improving cache locality for
GPU-based volume rendering,” Parallel Computing, vol. 40, no. 5/6,
pp. 59–69, May 2014.

[3] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[4] D. Okada, F. Ino, and K. Hagihara, “Accelerating the Smith-Waterman
algorithm with an interpair pruning method for all-pairs comparison
of base sequences,” BMC Bioinformatics, vol. 16, no. 321, Oct. 2015,
15 pages.

[5] NVIDIA Corporation, “CUDA C Programming Guide Version
6.5,” Aug. 2014. [Online]. Available: http://docs.nvidia.com/cuda/
pdf/CUDA C Programming Guide.pdf

[6] F. Ino, S. Nakagawa, and K. Hagihara, “GPU-Chariot: A program-
ming framework for stream applications running on multi-GPU sys-
tems,” IEICE Trans. Information and Systems, vol. E96-D, no. 12,
pp. 2604–2616, Dec. 2013.

[7] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute
device image in OpenCL for multiple GPUs,” in Proc. PPoPP’11,
Feb. 2011, pp. 277–288.

[8] Khronos OpenCL Working Group, “The OpenCL specification ver-
sion 2.2,” Mar. 2016, http://www.khronos.org/registry/cl/.

[9] C. Müller, S. Frey, M. Strengert, C. Dachsbacher, and T. Ertl, “A
compute unified system architecture for graphics clusters incorporat-
ing data locality,” IEEE Trans. Visualization and Computer Graphics,
vol. 15, no. 4, pp. 605–617, Jul. 2009.

[10] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proc. ICS’12,
Jun. 2012, pp. 341–352.

[11] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping,” in Proc.
MICRO’09, Dec. 2009, pp. 45–55.

[12] F. Ji, H. Lin, and X. Ma, “RSVM: a region-based software virtual
memory for GPU,” in Proc. PACT’13, Sep. 2013, pp. 269–278.

[13] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent CPU-GPU
collaboration for data-parallel kernels on heterogeneous systems,” in
Proc. PACT’13, Sep. 2013, pp. 245–255.

[14] J. Lee, M. Samadi, and S. Mahlke, “VAST: The illusion of a large
memory space for GPUs,” in Proc. PACT’14, Aug. 2014, pp. 443–
454.

[15] J. Cabezas, L. Vilanova, I. Gelado, T. B. Jablin, N. Navarro, and
W. mei W. Hwu, “Automatic parallelization of kernels in shared-
memory multi-GPU nodes,” in Proc. ICS’15, Jun. 2015, pp. 3–13.

[16] L. D. Solano-Quinde, B. M. Bode, and A. K. Somani, “Automatic
parallelization of GPU applications using OpenCL,” in Proc. AP-
CASE’15, Jul. 2015, pp. 276–283.

[17] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Mateo, CA:
Morgan Kaufmann, Oct. 2000.

[18] OpenACC-Standard.org, “The OpenACC application programming
interface, version 2.5,” Oct. 2015.

[19] T. Kato, F. Ino, and K. Hagihara, “PACC: An extension of OpenACC
for pipelined processing of large data on a GPU,” in Poster of SC’14,
Nov. 2014.

[20] S. Lee and R. Eigenmann, “OpenMPC: extended OpenMP for ef-
ficient programming and tuning on GPUs,” Int’l J. Computational
Science and Engineering, vol. 8, no. 1, pp. 4–20, 2013.

