
Reducing Memory Usage by the Lifting-based Discrete
Wavelet Transform with a Unified Buffer on a GPU

Takuya Ikuzawaa,b, Fumihiko Inoa,∗, Kenichi Hagiharaa

aGraduate School of Information Science and Technology, Osaka University,
1-5 Yamada-oka, Suita, Osaka 565-0871, Japan

bIndustrial ICT Solutions Company, Toshiba Corporation,
72-34 Horikawa-cho, Saiwai-ku, Kawasaki, Kanagawa 212-0013, Japan

Abstract

In this study, to improve the speed of the lifting-based discrete wavelet trans-

form (DWT) for large-scale data, we propose a parallel method that achieves low

memory usage and highly efficient memory access on a graphics processing unit

(GPU). The proposed method reduces the memory usage by unifying the input

buffer and output buffer but at the cost of a working memory region that is smaller

than the data size n. The method partitions the input data into small chunks, which

are then rearranged into groups so different groups of chunks can be processed in

parallel. This data rearrangement scheme classifies chunks in terms of data depen-

dency but it also facilitates transformation via simultaneous access to contiguous

memory regions, which can be handled efficiently by the GPU. In addition, this

data rearrangement is interpreted as a product of circular permutations such that

a sequence of seeds, which is an order of magnitude shorter than input data, al-

lows the GPU threads to compute the complicated memory indexes needed for

∗Corresponding author. Tel.: +81 6 6879 4353; fax: +81 6 6879 4354.
Email address: ino@ist.osaka-u.ac.jp (Fumihiko Ino)

Preprint submitted to Journal of Parallel and Distributed Computing March 24, 2016

parallel rearrangement. Because the DWT is usually part of a processing pipeline

in an application, we believe that the proposed method is useful for retaining the

amount of memory for use by other pipeline stages.

Keywords: Discrete wavelet transform, lifting scheme, memory-saving

computation, in-place algorithm, GPU

1. Introduction

The discrete wavelet transform (DWT) [1] is a well-known method for time-

frequency analysis, which analyzes a signal in both the time and frequency do-

mains using various time-frequency representations. The DWT employs wavelets

as these representations, or scaled and translated versions of a finite-length or fast-

decaying oscillating waveform called a mother wavelet. The DWT is useful for

classifying the input signal into high-frequency components and low-frequency

components in the same manner as the traditional fast Fourier transform (FFT).

Given a signal with n samples (we assume that n is a power of 2), the DWT can

be processed within O(n) time, whereas the FFT requires O(n log n) time; con-

sequently, the DWT is more computationally efficient than the FFT. Similar to

the FFT, the DWT is a separable filter. For example, a two-dimensional (2-D)

DWT filter can be realized by row-wise and column-wise (horizontal and verti-

cal) 1-D DWT filters. The DWT is useful in various fields, such as data compres-

sion for images [2, 3, 4], artifact removal [5], data decoding for earth observation

satellites [6] and clustering analysis for geometrical data [7]. These typical ap-

plications usually employ multiresolution analysis [1], where the DWT is applied

2

recursively to low-frequency components at each resolution level of the hierar-

chy. Therefore, a fast DWT implementation is required to process DWT-based

applications in real-time.

Acceleration methods for the DWT can be classified into two types: algorithm-

based and accelerator-based approaches. An example of the former is the lifting

scheme [8], which halves the computational requirements of the traditional filter

bank scheme [9]. Furthermore, the lifting scheme is an in-place algorithm, which

is capable of overwriting the algorithm’s output onto the input buffer; thus, the

lifting scheme reduces the amount of memory usage by half compared with the

filter bank scheme. In this study, an in-place algorithm is defined as an algorithm

that requires O(1) memory space, excluding the input buffer of size n.

The DWT has also been implemented in many accelerators, such as graphics

processing units (GPUs) [10], field programmable gate arrays [11], and cell broad-

band engines [12, 13]. The GPU is one of the most popular commodity devices

among these hardware types, where it provides a much higher memory bandwidth

than the CPU. For example, the latest Maxwell architecture [14] provides 336

GB/s of memory bandwidth, which is one magnitude higher than that of the dou-

ble data rate fourth generation (DDR4) memory. Consequently, many memory-

bound applications have been successfully accelerated on GPUs [15, 16, 17]. The

DWT is a memory-bound operation rather than a compute-bound operation, so we

consider that the GPU is a promising accelerator for the DWT.

Laan et al. [10] accelerated the lifting scheme on a GPU that is compatible

with the compute unified device architecture (CUDA) [18]. They implemented

3

row-wise and column-wise 1-D DWTs as kernel functions, which are then of-

floaded from the CPU to the GPU. Their kernels facilitate efficient memory ac-

cess by using a data layout that stores high-frequency components in a contiguous

memory region. After the high-frequency components, low-frequency compo-

nents are also stored in a contiguous memory region. This data layout is use-

ful for maximizing the effective memory bandwidth on a GPU because memory

transactions are performed per warp, i.e., a series of GPU threads that executes the

same instruction every clock cycle [18], where the threads in a warp are allowed

to access a contiguous memory region simultaneously via a 128-byte memory

transaction.

However, this layout distinguishes the output buffer from the input buffer,

thereby eliminating the advantage of in-place transformation. For signal data

larger than half of the GPU memory capacity, the data must be swapped from the

GPU memory to the CPU memory. This data transfer between the CPU and GPU

degrades the overall transformation performance because the peak bandwidth of

the PCI Express (PCIe) bus is 15.8 GB/s, which is one magnitude lower than that

of the GPU memory. In addition, the DWT is usually part of a processing pipeline

in an application, so it is better to retain the amount of memory for use by other

pipeline stages.

In this study, in order to obtain a fast lifting-based DWT for large-scale data,

we propose a parallel method that reduces the amount of memory usage and

that facilitates highly efficient memory access on a CUDA-compatible GPU. The

proposed method achieves memory-saving transformation by unifying the input

4

buffer and the output buffer but with the cost of a tiny working memory space,

which is less than the input size n. Naive unification avoids parallelizing the

lifting scheme because the unified buffer causes many flow dependencies during

transformation. To address this issue, the proposed method partitions the input

data into small chunks, which are then rearranged in an appropriate manner so the

parallel DWT can be performed over the unified buffer. Thus, this data rearrange-

ment can be regarded as a preprocessing phase that classifies the input data into

groups so different groups are independent of each other, where data-dependent

tasks within the same group are processed sequentially, but different groups can

be processed in parallel. Furthermore, chunk operations can be processed in a

single-instruction, multiple-data (SIMD) manner because each chunk comprises

multiple data elements.

In addition to the buffer unification mentioned above, the proposed method

performs the DWT via simultaneous access to contiguous regions. Thus, after the

chunks have been generated using this GPU-friendly access pattern, the generated

chunks can also be placed in appropriate positions by this favorable access pattern.

Allowing the GPU threads to compute the complicated memory addresses where

their responsible chunks must be placed is a challenging issue. In particular, irreg-

ular addresses must be computed from very small amounts of information with a

data size less than n to maintain the advantage of the in-place transformation. To

tackle this issue, the proposed method represents a sequence of memory addresses

as a circular permutation. This interpretation allows us to precompute a small se-

quence of numbers, which can then be used as seeds to produce the sequence of

5

memory addresses for use in data rearrangement.

The remainder of this paper is organized as follows. Section 2 introduces

related research on GPU-accelerated DWT implementations. Section 3 summa-

rizes the lifting scheme, which forms the basis of the proposed method. Section

4 describes the proposed method and Section 5 presents the experimental results.

Finally, Section 6 gives the conclusions.

2. Related Work

Table 1 compares related research into the acceleration of the DWT on GPUs.

Each study employed different hardware so the peak performance is presented

with the transformation throughput to allow standardization. To the best of our

knowledge, no previous GPU-based implementation has achieved a compact data

representation and data arrangement that enables GPU-friendly memory accesses

for the lifting-based DWT.

Wong et al. [19] implemented the filter bank scheme on a GeForce 7800 GTX

GPU, where their five-level DWT implementation was based on OpenGL [20], or

a graphics application programming interface (API). They selected the filter bank

scheme rather than the lifting scheme because the data dependencies in the lifting

scheme are more complex than those in the filter bank scheme. These complex

data dependencies cannot be handled efficiently by OpenGL, which is specialized

for graphics applications, because OpenGL has many restrictions on its program-

ming capability compared with CUDA. For example, OpenGL prohibits the ex-

plicit management of an on-chip cache called shared memory [18]. Despite these

6

restrictions, Tenllado et al. [21] implemented the lifting scheme using OpenGL.

However, they found that the filter bank scheme was faster than the lifting scheme

due to the complex data dependencies mentioned above.

Franco et al. [22] implemented the filter bank scheme on a Tesla C870 GPU.

They adopted a row-column approach, which reuses a horizontal DWT kernel as

a vertical DWT kernel by transposition. Their implementation transformed an

8192×8192-pixel image within 71 ms and the transformation throughput reached

0.9 Gpixel/s. However, the overall performance was limited by data transfer be-

tween the CPU and GPU. Transferring the data between the CPU and GPU re-

quired 163 ms, so the transformation throughput dropped to 0.3 Gpixel/s after

considering these overheads. A similar row-column approach was presented by

Galiano et al. [23].

To the best of our knowledge, Matela et al. [3] first implemented the filter

bank scheme on a CUDA-compatible GPU. Their implementation was based on

a block-based approach, which allows the horizontal and vertical DWT kernels

to be merged into a single kernel. Their implementation copies 2-D blocks into

the shared memory, which can be commonly accessed from threads in the same

thread block [18]. This on-chip memory is useful for saving the GPU memory

bandwidth, so that the ratio R of the memory throughput over the peak memory

bandwidth was more than 1.0. That is, on-chip data was efficiently shared among

threads. In their implementation, they distinguished the output region from the

input region.

Laan et al. [10] proposed a hybrid of the row-column and block-based ap-

7

proaches. Their horizontal process is same as that in the row-column approach.

By contrast, their vertical process avoids transposition by applying the vertical

DWT to vertically-long blocks. Furthermore, a sliding window mechanism was

developed to reuse on-cache data fetched from the GPU memory. Similar to the

block-based approach [3], this hybrid approach increased the ratio R to more than

1.0. Using a GeForce 8800 GTX card, their implementation achieved a transfor-

mation throughput of 1.5 Gpixel/s for a 4096 × 4096-pixel image. This through-

put was roughly ×3 higher than those achieved by a row-column scheme and an

OpenGL-based implementation [21]. As presented theoretically in [8], Laan et

al. demonstrated that the lifting scheme was two times faster than the filter bank

scheme on the CUDA-compatible GPU. Kucis et al. [24] presented an extension

of Laan’s method that reduces synchronization by allowing redundant computa-

tion between threads. This extended method achieved a transformation throughput

of 8.3 Gpixel/s on a GeForce GTX 580 card, which was 30% faster than the basic

method. However, after considering the data transfer between the CPU and GPU,

the transformation throughput decreased to 0.4 Gpixel/s.

Sharma et al. [25] used OpenCL [26] to implement the lifting scheme on a

GeForce GTX 285 GPU. OpenCL is a standard for heterogeneous computing plat-

forms, so their implementation ran on CUDA-incompatible GPUs and multicore

CPUs. Their OpenCL-based implementation achieved a transformation through-

put of 0.4 Gpixel/s for a 4096 × 4096-pixel image, but it was slower than that of

their CUDA-based implementation, which was 0.7 Gpixel/s.

8

Table 1: Comparison of related research. P denotes the peak memory bandwidth for the GPU
employed. ρ and ρ+ denote the transformation throughputs without and with data transfer time
between the CPU and GPU, respectively. For the L-level DWT, the numberN of transformed pix-
els is given by N =

∑L
k=1 N

2/4k−1 because the level k transforms an N/2k−1 ×N/2k−1-pixel
region. R = NA/T/P is the ratio of the memory throughput over the peak memory bandwidth
P , where A and T are the amount of memory access per pixel and the execution time, respectively.
The proposed method assumes that a chunk comprises b = 512 elements.

Study DWT scheme API GPU Memory Data size Memory P R Throughput (Gpixel/s)
(level) capacity (MB) (pixel) usage (GB/s) ρ ρ+

Wong [19] Filter bank (5) OpenGL 7800 GTX 512 2K×2K 2n 38 — — 0.003
Tenllado [21] Lifting (5) OpenGL 7800 GTX 512 2K×2K 2n 38 0.33–0.73 0.3–0.4 —
Tenllado [21] Filter bank (5) OpenGL 7800 GTX 512 2K×2K 2n 38 0.57–0.66 0.3–0.6 —
Franco [22] Filter bank (1) CUDA Tesla C870 1536 8K×8K 2n 77 0.49 0.9 0.3
Laan [10] Lifting (3) CUDA 8800 GTX 768 4K×4K 2n 86 1.22 1.5 —
Matela [3] Lifting (1) CUDA GTX 295 896 2K×2K 2n 112 1.67 2.6 —
Galiano [23] Lifting (1) CUDA GTX 280 1024 4K×4K 2n 142 0.97 2.5 —
Sharma [25] Lifting (3) OpenCL GTX 285 1024 4K×4K 2n 159 0.11 0.4 —
Sharma [25] Lifting (3) CUDA GTX 285 1024 4K×4K 2n 159 0.18 0.7 —
Kucis [24] Lifting (1) CUDA GTX 580 1536 4K×4K 2n 192 3.11 8.3 0.4
This paper Lifting (1) CUDA GTX 580 1536 16K×16K n+ ⌈n/2b⌉ 192 1.27 2.8 0.7
This paper Lifting (1) CUDA GTX 980 Ti 6192 32K×32K n+ ⌈n/2b⌉ 336 1.38 5.3 2.0

3. Lifting based DWT

Let x0, x1, . . . , xn−1 be the input signal with n samples. We assume that n

is a power of two. Given the input signal, the DWT outputs its low-frequency

components c0, c1, . . . , cn/2−1 and high-frequency components d0, d1, . . . , dn/2−1.

In the lifting scheme [8], the t-th element ct of low-frequency components and dt

of high-frequency components, where 0 ≤ t < n/2, are given by

ct = x2t +

k0−1∑
i=−k0

uidt, (1)

dt = x2t+1 −
k1∑

j=−k1+1

pjx2(t+j), (2)

where ui (−k0 ≤ i < k0) and pj (−k1 < j ≤ k1) are coefficients determined by

the mother wavelet.

9

The data dependencies in Eqs. (1) and (2) indicate that in-place transforma-

tion can be achieved by overwriting dt to x2t+1, then ct to x2t. This access pat-

tern implies a cyclic layout, which stores the low-frequency element ct and high-

frequency element dt alternately: c0, d0, c1, d1, . . . , cn/2−1, dn/2−1. Using this lay-

out, the DWT can be implemented with two kernels, a high-pass filter kernel for

computing high-frequency components and a low-pass filter kernel for computing

low-frequency components.

One drawback of the cyclic layout is that it requires data packing to obtain the

filtered result, where the high- and low-frequency components are stored in odd

and even elements, respectively (note that the indexes start from zero). Further-

more, the cyclic layout cannot maximize the memory throughput during trans-

formation because both kernel functions cause a memory stride of two, where

the high- and low-pass kernels output odd and even elements, respectively. As a

further issue, the memory stride doubles at every hierarchical level of the multires-

olution analysis, where the DWT is applied recursively to low-frequency compo-

nents.

3.1. Laan’s Previous Method

Laan et al. [10] presented a solution to the data layout issue. Their method in-

creases the efficiency of memory access by using a block layout, which stores low-

frequency components and high-frequency components in contiguous regions:

c0, c1, . . . , cn/2−1, d0, d1, . . . , dn/2−1. However, this method separates the output

buffer from the input buffer due to the data dependencies inherent in Eqs. (1)

10

and (2). Consequently, it eliminates the advantage of in-place transformation and

consumes double the memory space, as mentioned in Section 1.

Consider here a block layout that naively unifies the input buffer and the output

buffer. As shown in Fig. 1(a), the high-pass filter kernel outputs high-frequency

element dt to xt+n/2, where 0 ≤ t < n/2. However, this execution eliminates part

of the original elements, xn/2, xn/2+2, . . . , xn−2, which are needed by the second

kernel to compute cn/4, cn/4+1, . . . , cn/2−1, as indicated in Eq. (1).

Two alternative approaches can be employed to avoid this elimination: a seri-

alization approach that sequentially processes data-dependent tasks or a duplica-

tion approach that copies all of the elements, x0, x1, . . . , xn−1, to another memory

region before outputting the computational results. The former approach fails to

take advantage of massively parallel computing on the GPU. The latter approach

corresponds to the previous method [10], which separates the output buffer from

the input buffer.

4. Proposed Method

Similar to Laan’s previous method [10], the proposed method employs a block

layout to exploit the high peak memory bandwidth of the GPU. Furthermore, the

proposed method rearranges the data elements so the odd elements follow the even

elements, as shown in Fig. 1(b). This rearrangement is performed on a per-chunk

basis, where each chunk contains b elements. Next, the method computes Eqs. (1)

and (2) to complete the lifting operation [10]. For simplicity, we assume 1-D data

in the following discussion.

11

12 ,,
−− nn

xx12/22/ ,,
−− nn

xxLL,,, 210 xxx L,,, 22/12/2/ ++ nnn
xxx

0d

4/nc

12/ −n
d

2d1d

14/ +n
c L

0c 1c L 12/ −n
c

Write

Read

22/ −n
d

(a)

12 ,,
−− nn

xxL24 ,,
−− nn

xxLL,,, 420 xxx L,,, 531 xxx

0d 12/ −n
d

2d1d

0c 22/ −n
cL

12/ −n
c

2c1c

Write

Read

22/ −n
d

(b)

Figure 1: Memory access pattern in lifting-based DWT. (a) When writing high-frequency compo-
nents, a naive unification scheme eliminates the original elements needed for the latter half of the
low-frequency components. (b) By contrast, the proposed scheme maintains the original elements
after writing the high-frequency components.

4.1. Data Rearrangement

The proposed method rearranges the input data according to the following two

steps.

1. Chunk generation: Given an input signal x0, x1, . . . , xn−1 with n samples,

the method constructs an even chunk and an odd chunk within every seg-

ment of 2b elements (see Fig. 2). An even chunk contains even elements

whereas an odd chunk contains odd elements. In the following discussion,

let m (= ⌈n/2b⌉) be the number of even chunks. For simplicity, the num-

ber of odd chunks is assumed to be the same as that of even chunks; thus,

the total number of chunks is given by 2m. To facilitate highly efficient

memory access, the chunk size is assumed to be a multiple of 128 bytes be-

12

L,,
6664
xx L,,

6765
xx

13
,,

−− nn
xxL

24
,,

−− nn
xxLL

1234
,,,,

−−−− nnnn
xxxxL

L,,,
420
xxx L,,,

531
xxx

L,,,,,,
543210
xxxxxx

0
C

1
C

2
C 3

C
12 −m

C
22 −m

C

b2 b2 b2

L

Figure 2: Chunk generation. Even and odd chunks are generated within every segment of 2b
elements. After generation, even and odd chunks appear alternately.

0
C

1
C

2
C

4
C

3
C

5
C

6
C

7
C

0
C

2
C

4
C

1
C

6
C

3
C

5
C

7
C

Before

After

Figure 3: Chunk rearrangement (m = 4). Odd chunks follow even chunks after rearrangement.
Note that C0 is an even chunk because the indexes start from zero.

cause the current CUDA accesses the global memory via 128-byte memory

transactions [18].

2. Chunk rearrangement: 2m chunks are rearranged such that m odd-chunks

appear after m even-chunks, as shown in Fig. 3. More formally, the 2i-th

chunk and the (2i + 1)-th chunk, where 0 ≤ i < m, are placed in the i-th

chunk and the (i+m)-th chunk after rearrangement.

Algorithm 1 shows the proposed chunk generation algorithm, which describes

the kernel function that needs to be executed by massive GPU threads in parallel.

This algorithm assumes that a thread block [18] containing 2b threads is responsi-

ble for generating two chunks within a segment of 2b elements. Each thread loads

its responsible element from the global memory to a shared array s of size 3 × b

13

(line 3), before performing local synchronization within the thread block. Note

that the last column of this array is a dummy region padded for avoiding bank

conflicts [18] when writing the loaded element back to the appropriate location in

the global memory (line 10). This row-wise algorithm can easily be extended to

a column-wise algorithm without using the shared memory. As described in [10],

column-wise operations can be achieved by assigning a row of 32 neighboring

columns to a warp, where every warp is allowed to access a contiguous memory

region.

Algorithm 1 Chunk generation kernel.
Input: Input signal x0, x1, . . . , xn−1 with n samples and b elements in a chunk
Output: Per-chunk rearranged elements x0, x2, . . . , xn−1 containing alternate

odd and even chunks

1: i← thread index;
2: j ← thread block index;
3: si%2,⌊i/2⌋ ← x2bj+i; ▷ Load responsible element into a shared array of size

3× b
4: synchthreads(); ▷ Local synchronization
5: if i < b then ▷ Even chunk generation
6: k ← 2i;
7: else ▷ Odd chunk generation
8: k ← 2(i− b) + 1;
9: end if

10: x2bj+i ← sk%2,⌊k/2⌋;

Chunk rearrangement can be represented as a product of l circular permuta-

tions: σ0 ◦ σ1 ◦ . . . ◦ σl−1, where σj (0 ≤ j < l) represents the j-th circular

permutation. Let (i j) be a transposition representing an exchange between the

i-th chunk and the j-th junk. The chunk rearrangement for m = 4 shown in Fig. 3

14

can then be formulated as a product of two circular permutations, (1 4 2)◦ (3 5 6).

According to this interpretation, a circular permutation (1 4 2) represents a data-

dependent task that circulates chunks C1, C4 and C2. Thus, a task is a series of

chunk movements that must be processed sequentially. However, different circular

permutations are independent of each other, so they can be processed in parallel.

Therefore, the proposed method assigns a circular permutation to a thread block,

which then sequentially processes a series of chunk movements that corresponds

to the assigned circular permutation. Note that a chunk contains multiple data

elements; thus, the data elements within a chunk can be processed simultaneously

by b threads from the same thread block in a SIMT manner.

A critical issue is how to formulate circular permutations according to the

number n of samples. To address this issue, we introduce the following lemma.

Lemma 1. Let s be the size of an arbitrary circular permutation σj (0 ≤ j < l),
which represents a series of chunk movements in step 2. Then, s ≤ ⌈log 2m⌉.

Proof . Let (a0 a1 a2 . . . as−1) be an arbitrary circular permutation, which rep-
resents a series of chunk movements in step 2, where this permutation indicates
that chunks Ca0 , Ca1 , . . . , Cas−1 must be circulated. Then, for all 0 ≤ k < s,
0 ≤ ak < 2m because there are 2m chunks in total. According to step 2, we have
Eq. (3).

ak =

{
ak+1/2, if ak+1 is even,
⌊ak+1/2⌋+m, otherwise. (3)

Note that for all 0 ≤ k < s, ak can be represented as a binary number with
⌈log 2m⌉ bits. In this binary representation, applying a circular right shift to ak+1

gives ak, as indicated by Eq. (3). For example, the permutation (1 4 2) has three
elements, 1, 4, and 2, which correspond to binary representations of 001, 100,
and 010, respectively, and the last two elements can be obtained by applying a
circular right shift to the first element 001 (see Fig. 4). Therefore, for an arbitrary
ak, applying a circular right shift at most ⌈log 2m⌉ times to ak produces itself;
thus, s ≤ ⌈log 2m⌉. □

15

()241 ()010100001

0

0 1

Figure 4: Interpretation of chunk rearrangement with a circular permutation. A circular permuta-
tion of length M can be mapped to a necklace with M beads and two colors, where rotations are
considered equivalent. In this example, M = 3.

According to Eq. (3), we have Eq. (4):

ak+1 = 2ak mod (2m− 1), (4)

where 0 ≤ k < s. Thus, the representative element a0 of a circular permutation

produces all the elements of that circular permutation. This means that the final

memory location for an arbitrary chunk can be computed from a0, i.e., a seed.

Algorithm 2 describes the proposed method for rearranging chunks according

to step 2. This algorithm assumes that the process uses l thread blocks of size

b and three inputs: (1) 2m chunks that need to be rearranged, (2) the number

l of circular permutations, and (3) their representative elements p0, p1, . . . , pl−1,

where pj is the representative element for circular permutation σj (0 ≤ j < l).

Given these inputs, the thread block with index j loads a chunk that corresponds

to the representative element pj in a register (line 2). Next, another chunk that

corresponds to the next element in circular permutation σj is moved into the empty

memory location where the copied chunk was present (line 5). Similar chunk

movements are iterated until the representative element is reached (lines 4–7).

Finally, the algorithm moves the representative element pj from the register into

the last empty location (line 8). Note that this rearrangement is optimal in terms

16

of the amount of memory access because all of the chunks that must move to a

different location are loaded once and stored once.

Algorithm 2 Chunk rearrangement kernel based on a product of circular permu-
tations.
Input: Chunks C0, C1, . . . , C2m−1 that need to be rearranged, number 2m of

chunks, and representative elements p0, p1, . . . , pl−1 of circular permutations
Output: Rearranged chunks C0, C1, . . . , C2m−1

1: j ← thread block index;
2: W ← Cpj ; ▷ b elements are copied in parallel
3: i← pj;
4: while 2i mod (2m− 1) ̸= pj do
5: Ci ← C2i mod (2m−1); ▷ b elements are copied in parallel
6: i← 2i mod (2m− 1);
7: end while
8: Ci ←W ; ▷ b elements are copied in parallel

4.2. Precomputation of Representative Elements

In order to perform the in-place DWT, the GPU threads must compute the

number l of circular permutations and all the representative elements p0, p1, . . . , pl−1,

for an arbitrary problem size n. In particular, the representative elements must be

assigned to thread blocks without duplication. However, it is not easy to paral-

lelize this assignment to GPU threads, mainly due to the lack of a global synchro-

nization mechanism.

Our solution to this issue is to precompute the number l of circular permu-

tations and representative elements p0, p1, . . . , pl−1 on the CPU. Algorithm 3 de-

scribes our sequential algorithm for computing all the representative elements.

This algorithm enumerates all of the elements in a circular permutation σj and

17

stores the minimum value as pj . The representative elements are computed per

circular permutation, so an array X is used to avoid duplicated enumeration.

Algorithm 3 Precomputation of representative elements for circular permutations.
Input: Number 2m of chunks
Output: Number l of circular permutations and representative elements

p0, p1, . . . , pl−1 of circular permutations

1: for i← 0 to 2m− 1 do ▷ Initialization
2: Xi ← 0;
3: end for
4: l← 0;
5: for i← 0 to 2m− 1 do ▷ Compute pl
6: if Xi = 0 then ▷ Not registered yet
7: pl ← i;
8: Xi ← 1;
9: j ← 2i mod (2m− 1); ▷ Generate number j such that j and i belong

to the same circular permutation
10: while j ̸= i do
11: Xj ← 1;
12: j ← 2j mod (2m− 1);
13: end while
14: l← l + 1;
15: end if
16: end for

The representative elements p0, p1, . . . , pl−1 are then transferred to constant

memory [18] (i.e., GPU memory) before generating chunks on the GPU. Note that

the capacity of constant memory is 64 KB in the current CUDA. This capacity is

sufficiently large to store representative elements for the largest problem size n

that can be processed on a GPU. A detailed analysis is provided in Section 5.1.

18

4.3. Space Complexity Analysis

The proposed method requires two different working spaces to perform the

DWT: (1) constant memory used for representative elements, and (2) shared mem-

ory and registers used for chunk generation and circulation.

The constant memory usage depends on the number l of representative ele-

ments. The following lemma [27] is introduced to formulate l for arbitrary n.

Lemma 2. According to Burnside’s lemma [28], the number of necklaces with
M beads and K (> 1) colors (see Fig. 4), where rotations are considered to be
equivalent, is

1

M

∑
i|M

µ

(
M

i

)
Ki =

1

M

M∑
i=1

Kgcd(i,M), (5)

where µ is the classical Möbius function and gcd(i,M) is the greatest common
divisor of i and M .

Thus, the number l+2 is equivalent to that of necklaces with M = ⌈log 2m⌉ beads

and K = 2 colors, where rotations are considered to be equivalent. Note that “+2”

considers two exceptions, permutations (0 0 . . . 0) and (1 1 . . . 1), which never

move chunks during the arrangement process. These exceptions correspond to the

head and tail chunks. Lemma 2 gives the following theorem.

Theorem 1. The number l of representative elements is smaller than m = ⌈n/2b⌉
if m ≥ 128.

Proof . Eq. (5) can be simplified further as follows.

l + 2 =
1

M

M∑
i=1

Kgcd(i,M) ≤ 1

M

M∑
i=1

Ki (6)

=
K(KM − 1)

M(K − 1)
(7)

<
KM+1

M(K − 1)
(8)

19

M = ⌈log 2m⌉, K = 2 and x ≤ ⌈x⌉ ≤ x + 1 for an arbitrary real number x, so
we have

l <
8m

log 2m
(9)

≤ m, if m ≥ 128. (10)

□

Eq. (10) indicates that 2m chunk indexes are reduced to at least half because a

circular permutation comprises at least two elements (i.e., two chunk indexes).

Therefore, the number l of representative elements is smaller than m = ⌈n/2b⌉.

Asymptotically, l is bounded by O(n/ log n) from Eq. (9).

In addition, the proposed method generates O(n/ log n) thread blocks during

chunk circulation because the method uses l thread blocks in total. The usage

of registers per thread block (i.e., per circular permutation) is equivalent to the

chunk size, where the chunk size is 4b in bytes if the signal data is stored in a

4-byte data type. Therefore, the proposed algorithm consumes O(n/ log n) reg-

isters if all of the thread blocks are processed simultaneously. However, due to

the limited amount of computational resources, such as the shared memory and

registers, CUDA restricts the maximum number of active thread blocks that can

be processed simultaneously [18]. Therefore, our CUDA-based implementation

runs with O(1) registers. Note that the proposed method achieves this restriction

by data arrangement, which eliminates the data dependencies between different

thread blocks. Such independent thread blocks are necessary to reduce the num-

ber of active thread blocks.

In summary, the proposed method consumes ⌈n/2b⌉ additional space locations

20

to perform the lifting-based DWT. Currently, we use b = 512, so this additional

memory usage is an order of magnitude lower than the n needed by existing meth-

ods that distinguish the output buffer from the input buffer.

4.4. Tiling-based Transformation

Tiling-based approaches [29, 30] are useful for dealing with large-scale data

that exceeds the GPU memory capacity. These approaches split the data into

tiles that are transformed separately. However, Eqs. (1) and (2) indicate that each

element needs its neighbors to update its value. Consequently, separated transfor-

mation creates blocking artifacts at the tile boundaries, thereby excessive tiles can

degrade the transformation quality.

This degradation can be avoided by having halo regions for each tile (see Fig.

5); the input data is decomposed into small overlapping segments (with halo re-

gions) to exactly transform all elements inside the tiles. Both the proposed and

Laan’s previous methods can be enhanced with a tiling-based approach by speci-

fying a segment as the input. However, the proposed memory-saving method ac-

cepts roughly twice larger segments than those accepted by the previous method.

As for tile creation, a 1-D block decomposition scheme is deployed to mini-

mize the overhead of data decomposition. An alternative is a 2-D block decompo-

sition scheme, but it complicates data transfer between the CPU and GPU because

elements of a 2-D tile is usually scattered throughout memory. In contrast, ele-

ments of a 1-D tile is stored in a contiguous memory region, which facilitates data

transfer between the CPU and GPU.

21

…
…

Tile SegmentHalo

Figure 5: A tiling-based approach with halo regions.

Table 2: Specifictions of hardware devices deployed for experiments. Effective bandwidths were
measured using the bandwidthTest program [18]. DMA stands for direct memory access.

GPU card 980 Ti 780 Ti 680 580
Compute capability 5.2 3.5 3.0 2.0
Architecture Maxwell Kepler Kepler Fermi
GPU memory capacity (GB) 6 3 2 2
Peak memory bandwidth (GB/s) 336.5 336.0 192.2 192.4
Effective memory bandwidth (GB/s) 249.1 236.3 152.5 169.2
Peak PCIe bandwidth (GB/s) 15.8 15.8 15.8 8.0
Effective PCIe bandwidth (GB/s) 11.5 11.8 12.2 6.3
Number of DMA engines 2 1 1 1

Note that tiling-based approaches can be efficiently processed in a pipeline;

the data segments are streamed through the pipeline to overlap CPU-GPU data

transfer with kernel execution. Such a pipeline can be implemented with CUDA

streams [18].

5. Experimental Results

To evaluate the proposed method, we performed comparisons with Laan’s pre-

vious method [10], which enabled GPU-friendly memory accesses with a block

layout scheme (see Section 3.1). In the experiments, we investigated the mem-

22

ory usage and execution time for the Deslauriers-Dubuc (13,7) wavelet [31] and

N ×N -pixel images, where 2K ≤ N ≤ 32K. Each pixel comprised 4-byte data.

Table 2 summarizes the specifications for our experimental machine, which had

an Intel Core i7-3770K CPU and either a GeForce GTX 980 Ti, 780 Ti, 680 or

580. The machine ran with Windows 8.1 (64 bit), CUDA 7.5 [18] and the driver

version 355.82. All of the implementations were compiled using the Visual Studio

2013 with the -O2 option.

5.1. Memory Consumption

Figure 6 shows the amount of memory usage. Compared with the previous

method, the proposed method halved the amount of memory usage by buffer uni-

fication. Consequently, on a GeForce GTX 980 Ti GPU, the proposed method

processed an N×N -pixel image of up to N = 32K pixels without data decompo-

sition. By contrast, the previous method processed a maximum size of N = 16K

pixels without data decomposition. Note that the entire GPU memory cannot be

used for the input/output buffer because part of the GPU memory is reserved for

the frame buffer.

Next, we investigated the additional memory size α (= 4l) required to store all

of the representative elements (Fig. 7). As shown in this figure, the size α reached

3.09 KB for a large image of 32K × 32K pixels, which consumed 4 GB of the

GPU memory. Consequently, we consider that the proposed method is useful for

minimizing additional memory usage with a practical data size, although it does

not achieve in-place transformation.

23

32

128

512

2,048

8,192

16

64

256

1,024

4,096

1

10

100

1,000

10,000

2K 4K 8K 16K 32K

M
em

o
ry

 u
sa

g
e

(M
B

)

Image size N

Previous

Proposed

Figure 6: Comparison of memory usage with different image sizes N . An image comprises N×N
pixels.

0.30
0.56

0.97

1.75

3.09

0

0.5

1

1.5

2

2.5

3

3.5

2K 4K 8K 16K 32K

W
o

rk
in

g
 m

em
o
ry

 s
iz

e
(K

B
)

Image size N

Figure 7: Working memory size required for representative elements. An image comprises N×N
pixels.

24

5.2. DWT Performance

The DWT is part of a processing pipeline in a practical application. There-

fore, many GPU-accelerated applications typically implement the DWT as well

as other pipeline stages on the GPU to accelerate the overall pipeline. Conse-

quently, we measured the execution time for four configurations where the input

data and output data were stored in either the CPU memory or the GPU mem-

ory. In the following, the notation x → y denotes a configuration, where x and

y represent the locations of the input data and the output data, respectively, and

x, y ∈ {C,G}. The notations C and G correspond to the CPU memory and the

GPU memory, respectively.

Figure 8 shows the execution times using the proposed method (without tiling)

and the previous method (with tiling) for large data. Note that the previous method

was extended to transform this large image successfully, where we decomposed

the image into two segments to transform them in order, as presented in Section

4.4. However, the pipelining capability was switched off, so that data segments

were processed in a synchronous manner.

The proposed method minimized the amount of memory usage, and it avoided

data transfer between the CPU and GPU. Thus, the proposed method was 2.4–

3.9 times faster than the tiled previous method when both the input and output

data were stored in the GPU memory (G → G). However, the proposed method

requires a preprocessing phase, which increased the kernel execution time by 2.0–

2.6 times. Similarly, the proposed method achieved speedups of 1.2–1.8 times

compared with the tiled previous method when either the input data or output

25

0
100
200
300
400
500
600
700
800
900

1000

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(a)

0

100

200

300

400

500

600

P
ro

p
o

se
d

P
re

v
.

(t
il

ed
)

P
ro

p
o

se
d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Data transfer Kernel execution

(b)

0

50

100

150

200

250

300

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o

se
d

P
re

v
.

(t
il

ed
)

P
ro

p
o

se
d

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(c)

0
50

100
150
200
250
300
350
400
450
500

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

(t
il

ed
)

P
ro

p
o

se
d

P
re

v
.

(t
il

ed
)

P
ro

p
o

se
d

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(d)

Figure 8: Execution time with different input/output configurations for large data. Results for (a)
GeForce GTX 980 Ti with N = 32K, (b) 780 Ti with N = 24K, (c) 680 with N = 16K, and (d)
580 with N = 16K. The data sizes were 4.0 GB, 2.3 GB and 1.0 GB for N = 32K, N = 24K
and N = 16K, respectively.

26

data were stored in the GPU memory (G → C and C → G). These configu-

rations required data transfer between the CPU and GPU regardless of the data

size. Moreover, the tiled previous method swapped half of the input data before

the second transformation because its input and output buffers exhausted the GPU

memory. This swapping operation increased the data transfer volume, and thus the

tiled previous method was slower than the proposed method. Finally, the proposed

method was 12–18% slower than the tiled previous method when both the input

and output data were stored in the CPU memory (C → C). However, CPU–GPU

data transfer determines the transformation throughput for this configuration, so

that these overheads can be partially hidden by pipelined execution, as described

in Section 5.4.

Figure 9 shows the execution times for small data, which could be transformed

without tiling. Compared with the previous method, the proposed method required

1.1–2.7 more time to transform these small data. In this case, the previous method

completed the DWT in almost the same data transfer time as the proposed method.

Consequently, the preprocessing overheads increased the execution time for the

proposed method. As mentioned for large data, these overheads can be partially

addressed by pipelined execution.

5.3. Kernel Execution Efficiency

The DWT is a memory-bound operation, so we evaluated the execution effi-

ciency of our kernel functions in terms of the effective memory throughput. Figure

10 shows the effective memory throughput E = M/T for the proposed method,

27

0

50

100

150

200

250

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(a)

0

50

100

150

200

250

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(b)

0

10

20

30

40

50

60

70

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(c)

0

20

40

60

80

100

120

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

P
ro

p
o
se

d

P
re

v
.

P
re

v
.

(t
il

ed
)

G→G G→C C→G C→C

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Data transfer Kernel execution

(d)

Figure 9: Execution time with different input/output configurations for small data. Results for (a)
GeForce GTX 980 Ti with N = 16K, (b) 780 Ti with N = 16K, (c) 680 with N = 8K, and
(d) 580 with N = 8K. The data sizes were 1 GB and 256 MB for N = 16K and N = 8K,
respectively.

28

Table 3: Number of data elements accessed. We used r = 256 and h = 6 for the Deslauriers-
Dubuc (13,7) wavelet employed in this study.

Breakdown Amount of memory access
Chunk generation 4N2

Chunk rearrangement 4N(N − 2b)
Lifting DWT 4(1 + h/r)N2

where M and T are the amount of memory accesses and the kernel execution time,

respectively.

The amount M of memory accesses is determined as follows. First, the num-

ber of elements accessed in the chunk generation step is given by 2N2 because

every chunk is read and written once during this step. This step is repeated twice,

each for the horizontal 1-D DWT and the vertical 1-D DWT, so that 4N2 memory

accesses are required for an N ×N -pixel image. Similarly, the chunk rearrange-

ment step incurs 2N(N−2b) memory accesses, where 2b corresponds to the head

and tail chunks, which never move during this step, and thereby 4N(N − 2b) lo-

cations are accessed for an N × N -pixel image. Finally, the thread blocks in the

lifting step access halo regions because computation for an element requires its

neighboring elements. For simplicity, we considered 1-D data with a size of n.

For 1-D data, n/r thread blocks referred to r+2h elements to output n elements,

where r and h = k0+k1 are the numbers of responsible elements per thread block

and neighboring elements in the halo region, respectively. Consequently, the lift-

ing step for 1-D data accessed (r+2h)n/r+n = 2(1+h/r)n memory locations.

By extending this result to 2-D data, which requires a row-wise 1-D DWT and a

column-wise 1-D DWT, we obtained 4(1 + h/r)N2.

29

0

50

100

150

200

250

300

2K 4K 8K 16K 32K

M
em

o
ry

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Image size N

980 Ti 780 Ti 680 580

Figure 10: Effective memory throughputs obtained without tiling. Owing to memory exhaustion,
kernels on 780 Ti, 680 and 580 cards failed to transform a 32K× 32K-pixel image.

As shown in Fig. 10, the effective memory throughputs were bounded by the

peak GPU memory bandwidth of the deployed card (Table 2). The proposed

method achieved high memory throughputs, although it changes the order of

data elements in the preprocessing phase. This highly efficient arrangement is

attributable to regular memory access in contiguous regions. However, Table 3

shows the main drawback of the proposed method, which is the increased amount

of memory accesses. Compared with the previous method, the proposed method

required three times more memory accesses to perform the lifting-based DWT

with a unified buffer. This theoretical result explains why the proposed method

required 2.0–2.6 times longer kernel time than the previous method (see Section

5.2).

30

5.4. Pipelined DWT Throughput

We next evaluated tiling-based pipelined versions presented in Section 4.4.

We measured the transformation throughput for configuration C → C, where we

assumed that an image of size N ×N was stored in the CPU memory. The image

size N ranged from 2K to 64K, so that the largest image could not be stored

entirely in the GPU memory.

Figure 11 shows the throughputs measured for different image sizes N , where

the number of tiles was set to N/b. Except for the 980 Ti, the throughputs

achieved by the pipelined proposed method were close to those achieved using the

pipelined previous method. By contrast, the non-pipelined proposed version was

12–25% slower than the non-pipelined previous version due to the preprocess-

ing phase. Thus, the proposed method degraded the transformation throughput

for on-memory data, but this performance degradation can be partially hidden by

overlapping, particularly for large-scale data that cannot be stored entirely in the

GPU memory.

With respect to the 980 Ti card, this card is equipped with two direct memory

access (DMA) engines, which enable simultaneous bidirectional transfer between

the CPU and GPU. Consequently, as compared with the non-pipelined version, the

pipelined version reduced the data transfer time. However, this bidirectional trans-

fer caused memory access contention, so there was a gap between the pipelined

and non-pipelined throughputs, as shown in Fig. 11(a).

Figure 12 investigates this contention issue in more detail. This figure explains

(1) why the pipelined proposed version was slower than the pipelined previous

31

0.0

0.5

1.0

1.5

2.0

2.5

2K 4K 8K 16K 32K 64K

T
ra

n
sf

o
rm

at
io

n
 t

h
ro

u
g
h
p
u
t

(G
p
ix

el
/s

)

Image size N

Previous (no-pipe) Proposed (no-pipe)

Previous (pipe) Proposed (pipe)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2K 4K 8K 16K 32K 64K

T
ra

n
sf

o
rm

at
io

n
 t

h
ro

u
g
h
p
u
t

(G
p
ix

el
/s

)

Image size N

Previous (no-pipe) Proposed (no-pipe)

Previous (pipe) Proposed (pipe)

(b)

0.0

0.5

1.0

1.5

2.0

2K 4K 8K 16K 32K 64K

T
ra

n
sf

o
rm

at
io

n
 t

h
ro

u
g
h
p
u
t

(G
p
ix

el
/s

)

Image size N

Previous (no-pipe) Proposed (no-pipe)

Previous (pipe) Proposed (pipe)

(c)

0.0

0.2

0.4

0.6

0.8

1.0

2K 4K 8K 16K 32K 64K

T
ra

n
sf

o
rm

at
io

n
 t

h
ro

u
g
h
p
u
t

(G
p
ix

el
/s

)

Image size N

Previous (no-pipe) Proposed (no-pipe)

Previous (pipe) Proposed (pipe)

(d)

Figure 11: Comparison of transformation throughputs with different image sizes N . Results for
(a) GeForce GTX 980 Ti, (b) 780 Ti, (c) 680, and (d) 580. The number of segments was fixed to
N/b.

32

(a)

(b)

(c)

(d)

Figure 12: Timeline views of tiling-based pipelined implementations. In each subfigure, the upper
four lines show the activities of CUDA streams. The lower three lines summarize the activities in
terms of kernel execution (gray), CPU→GPU data transfer (green) and GPU→CPU data transfer
(purple). GeForce GTX 980 Ti has two DMA engines, so that (a) the kernel execution overhead
of the proposed method increased data transfer time compared to (b) the previous method. In
contrast, GTX 680 has a single DMA engine, so that there was no significant gap between (c) the
proposed method and (d) the previous method.

33

version on the GTX 980 Ti card and (2) why the former was as fast as the lat-

ter on the GTX 680 card. With multiple DMA engines, the GPU memory can

be simultaneously accessed by three CUDA operations: (1) kernel execution, (2)

CPU→GPU data transfer and (3) GPU→CPU data transfer, as shown in Figs.

12(a) and 12(b). This simultaneous access slightly affected the performance of

the pipelined proposed version, which took longer kernel execution time than the

pipelined previous version. In fact, the proposed version declined the data transfer

rate by 10% compared to the previous version. Therefore, the declined rate deter-

mined the transformation time though kernel execution was fully overlapped with

CPU-GPU data transfer. In contrast, such a decline was not observed on the GTX

680 card, which exclusively transfers data between the CPU and GPU owing to a

single DMA engine; at most two CUDA operations can access the GPU memory

simultaneously: (1) kernel execution and (2) either CPU→GPU data transfer or

GPU→CPU data transfer, as shown in Figs. 12(c) and 12(d).

Thus, the pipelined DWT throughput for configuration C → C was mainly

determined by the peak PCIe bandwidth. Because the 580 card has a PCIe gener-

ation 2 interface, its DWT throughput was half of that achieved with the 780 ti or

680 cards, which has a PCIe generation 3 interface. Multiple DMA engines fur-

ther increased the throughput with a full overlap but declined the data transfer rate

due to memory contention. The pipelined scheme is useful for partially hiding the

overhead of the proposed method.

As for the practicality of the proposed method, the method is useful for pro-

cessing larger data at a time. For example, a decoding system [6] for satellite

34

images adopted a series of decoder accelerated on a GPU. Another example is

a clustering system [7] that groups similar objects into disjoint classes. Because

a cluster algorithm was applied to tiles separately, the proposed memory-saving

method allows more objects to be grouped from an approximately twice larger

tile.

6. Conclusion

In this study, we proposed a parallel DWT method that achieves both a com-

pact data representation and GPU-friendly memory accesses for the lifting scheme.

The proposed data representation unifies the output buffer with the input buffer.

The key idea of unification is chunk-based data rearrangement, which separates

data-independent tasks from data-dependent tasks, and thus massively parallel

threads are allowed to move data elements according to circular permutations. The

proposed method also achieves highly efficient memory access by allowing GPU

threads to access contiguous memory regions. However, the proposed method re-

quires at most ⌈n/2B⌉ numbers as seeds for a series of memory addresses that are

needed for parallel rearrangement.

The results of experiments showed that the proposed method was a maximum

of 3.9 times faster than a previous method that separates the input buffer from

the output buffer. In particular, the proposed method was useful when either the

input buffer or output buffer existed in the GPU memory. We also found that the

proposed method achieved a high memory throughput that was close to the peak

memory bandwidth. However, our kernel was affected by the increased amount of

35

memory accesses, i.e., three times that of the previous kernel. This disadvantage

can be partially resolved by overlapping kernel execution with CPU-GPU data

transfer. This pipelined implementation achieved a transformation throughput that

was comparable to the previous method.

Acknowledgments

This study was supported in part by the Japan Society for the Promotion of

Science KAKENHI Grant Numbers 15K12008 and 15H01687, and the Japan

Science and Technology Agency CREST program, “An Evolutionary Approach

to Construction of a Software Development Environment for Massively-Parallel

Computing Systems.” We are also grateful to the anonymous reviewers for their

valuable comments.

References

[1] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd Edi-

tion, Academic Press, 2008.

[2] I. V. Šimek, R. R. ASN, GPU acceleration of 2D-DWT image compression

in MATLAB with CUDA, in: Proc. 2nd UKSIM European Symp. Computer

Modeling and Simulation (EMS’08), 2008, pp. 274–277.

[3] J. Matela, GPU-based DWT acceleration for JPEG2000, in: Proc. Doctoral

Workshop Mathematical and Engineering Methods in Computer Science

(MEMICS’09), 2009, pp. 136–143.

36

[4] J. Ao, S. Mitra, B. Nutter, Fast and efficient lossless image compression

based on CUDA parallel wavelet tree encoding, in: Proc. Southwest Symp.

Image Analysis and Interpretation (SSIAI’14), 2014, pp. 21–24.

[5] L. Zhu, Y. Zhou, D. Zhang, D. Wang, H. Wang, X. Wang, Parallel multi-

level 2D-DWT on CUDA GPUs and its applications in ring artifact removal,

Concurrency and Computation: Practice and Experience.

[6] C. Song, Y. Li, B. Huang, A GPU-accelerated wavelet decompression sys-

tem with SPIHT and Reed-Solomon decoding for satellite images, IEEE J.

Selected Topics in Applied Earth Observations and Remote Sensing 4 (3)

(2011) 683–690.

[7] A. A. Yıldırım, C. Özdoğan, Parallel wavecluster: A linear scaling parallel

clustering algorithm implementation with application to very large datasets,

J. Parallel and Distributed Computing 71 (7) (2011) 955–962.

[8] W. Sweldens, The lifting scheme: A construction of second generation

wavelets, SIAM J. Mathematical Analysis 29 (2) (1998) 511–546.

[9] S. G. Mallat, A theory for multiresolution signal decomposition: The

wavelet representation, IEEE Trans. Pattern Analysis and Machine Intelli-

gence 11 (7) (1989) 674–693.

[10] W. J. van der Laan, A. C. Jalba, J. B. Roerdink, Accelerating wavelet lifting

on graphics hardware using CUDA, IEEE Trans. Parallel and Distributed

Systems 22 (1) (2011) 132–146.

37

[11] M. E. Angelopoulou, P. Y. K. Cheung, K. Masselos, Y. Andreopoulos, Im-

plementation and comparison of the 5/3 lifting 2D discrete wavelet trans-

form computation schedules on FPGAs, J. Signal Processing Systems 51 (1)

(2008) 3–21.

[12] D. A. Bader, V. Agarwal, S. Kang, Computing discrete transforms on the

Cell Broadband Engine, Parallel Computing 35 (3) (2008) 119–137.

[13] M. Błażewicz, M. Ciżnicki, P. Kopta, K. Kurowski, P. Lichocki, Two-

dimensional discrete wavelet transform on large images for hybrid comput-

ing architectures: GPU and CELL, in: Proc. 17th European Conf. Parallel

Computing Workshops (Euro-Par’11 Workshops), Part I, 2011, pp. 481–490.

[14] NVIDIA Corporation, NVIDIA GeForce GTX 980 (Nov. 2014).

URL http://international.download.nvidia.com/

geforce-com/international/pdfs/GeForce_GTX_980_

Whitepaper_FINAL.PDF

[15] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C. Phillips,

GPU computing, Proceedings of the IEEE 96 (5) (2008) 879–899.

[16] F. Ino, Y. Munekawa, K. Hagihara, Sequence homology search using fine

grained cycle sharing of idle GPUs, IEEE Trans. Parallel and Distributed

Systems 23 (4) (2012) 751–759.

[17] Y. Okitsu, F. Ino, K. Hagihara, High-performance cone beam reconstruction

38

using CUDA compatible GPUs, Parallel Computing 36 (2/3) (2010) 129–

141.

[18] NVIDIA Corporation, CUDA C Programming Guide Version 7.5 (Sep.

2015).

URL http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf

[19] T.-T. Wong, C.-S. Leung, P.-A. Heng, J. Wang, Discrete wavelet transform

on consumer-level graphics hardware, IEEE Trans. Multimedia 9 (3) (2007)

668–673.

[20] D. Shreiner, M. Woo, J. Neider, T. Davis, OpenGL Programming Guide, 5th

Edition, Addison-Wesley, Reading, MA, 2005.

[21] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, F. Tirado, Parallel implementa-

tion of the 2D discrete wavelet transform on graphics processing units: Fil-

ter bank versus lifting, IEEE Trans. Parallel and Distributed Systems 19 (3)

(2008) 299–310.

[22] J. Franco, G. Bernabé, J. Fernández, M. Ujaldón, The 2D wavelet transform

on emerging architectures: GPUs and multicores, J. Real-Time Image Pro-

cessing 7 (3) (2012) 145–152.

[23] V. Galiano, O. López, M. P. Malumbres, H. Migallón, Parallel strategies

for 2D discrete wavelet transform in shared memory systems and GPUs, J.

Supercomputing 64 (1) (2013) 4–16.

39

[24] M. Kucis, D. Barina, M. Kula, P. Zemcik, 2-D discrete wavelet transform

using GPU, in: Proc. 26th Int’l Symp. Computer Architecture and High Per-

formance Computing Workshop (SBAC-PADW’14), 2014, pp. 1–6.

[25] B. Sharma, N. Vydyanathan, Parallel discrete wavelet transform using

the open computing language: a performance and portability study, in:

Proc. 24th IEEE Int’l Parallel and Distributed Processing Symp. Workshops

(IPDPSW’10), 2010.

[26] Khronos OpenCL Working Group, The OpenCL specification version 1.1,

http://www.khronos.org/registry/cl/ (Jun. 2011).

[27] N. Metropolis, G.-C. Rota, Witt vectors and the algebra of necklaces, Ad-

vances in Mathematics 50 (2) (1983) 95–125.

[28] W. Burnside, Theory of Groups of Finite Order, 1897.

[29] T. Acharya, P.-S. Tsai, JPEG2000 Standard for Image Compression: Con-

cepts, Algorithms and VLSI Architectures, Wiley-Interscience, 2004.

[30] J.-W. Kim, J. Song, S. Lee, I.-C. Park, Tiled interleaving for multi-level 2-

D discrete wavelet transform, in: Proc. 40th IEEE Int’l Symp. Circuits and

Systems (ISCAS’07), 2007, pp. 3984–3987.

[31] G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Con-

structive Approximation 5 (1) (1989) 49–68.

40

