
A Bit-Parallel Algorithm for Searching Multiple
Patterns with Various Lengths

Ko Kusudoa,b, Fumihiko INOa,∗, Kenichi HAGIHARAa

aGraduate School of Information Science and Technology, Osaka University,
1-5 Yamada-oka, Suita, Osaka 565-0871, Japan

bFujitsu Limited,
1-5-2 Higashi-Shimbashi, Minato-ku, Tokyo 105-7123, Japan

Abstract

In this paper, we present an Advanced Vector Extensions (AVX) accelerated method

for a bit-parallel algorithm that realizes fast string search for maximizing stable

search throughput. An advantage of our method is that it accelerates string search

by regularizing both control flow and data structures. This regularization facili-

tates the exploitation of the latest vector instruction set to achieve efficient par-

allel search of multiple patterns of different lengths. We use AVX instructions

to increase search throughput per CPU core and employ OpenMP directives to

realize data-parallel search of strings. As a result, we found that our data struc-

ture doubled search throughput as compared with a previous bit-parallel approach

that used a data structure for patterns of the same length. We also found that our

method achieved stable search throughput for arbitrary data if the pattern size is

large, but small enough to fit into a word. Some experimental results are provided

to understand the advantage and disadvantage of our method with a comparison

∗Corresponding author. Tel.: +81 6 6879 4353; fax: +81 6 6879 4354.
Email address: ino@ist.osaka-u.ac.jp (Fumihiko INO)

Preprint submitted to Journal of Parallel and Distributed Computing October 29, 2014



to Aho-Corasick based methods. We believe that our method is useful for large

genome texts with many partial matches.

Keywords: string search, bit-parallel algorithm, acceleration, AVX

1. Introduction

String search identifies the location in a large string or text at which one or

more substring patterns appear. Numerous research areas require the acceleration

of multipattern search to handle large volumes of real-time data [1, 2]. For exam-

ple, network intrusion detection systems monitor packets flowing on the network

to protect computer systems from malicious access [3, 4]. String search is also

useful for locating specific amino acid sequences in biological databases [5, 6, 7].

Given performance requirements of such applications, a sophisticated efficient

parallel implementation is required to achieve string search acceleration. How-

ever, scaling search throughput with the number of processing elements is not

easy, because string search can be regarded as an irregular problem that suffers

from burdensome issues such as irregular control flow and unpredictable data ac-

cess. In particular, solving these issues is essential to efficiently parallelize string

search on a single instruction, multiple data (SIMD) parallel machine, because dif-

ferent control paths can result in SIMD serialization, which drops the efficiency of

parallel execution. Therefore, accelerating string search is a challenging problem

for the parallel processing community.

Many researchers [3, 8, 9] tried to parallelize the Aho-Corasick (AC) algo-

rithm [10], which simultaneously searches multiple patterns to reuse loaded sym-

2



bols between multiple patterns. Because string search is a memory-intensive prob-

lem rather than a computationally intensive problem, this data reuse approach is

useful to achieve acceleration. The AC algorithm represents multiple patterns as

a trie data structure, which is regarded as a deterministic finite automaton (DFA)

that detects a match by loading symbols from the beginning of the text. If there

is no valid state transition for the input symbol, then the automaton detects a

transition failure and performs backtracking to investigate the possibility of a

match from other locations. The time complexity of the AC algorithm is given

by O(n + m̂ + z), where n is the length of the text, m̂ is the sum of the lengths

of the patterns, and z is the total number of occurrences of the patterns [10]. The

AC algorithm can be easily implemented on a multiple instruction, multiple data

(MIMD) parallel machine by exploiting the data parallelism inherent to string

search. This data-parallel AC (DPAC) algorithm divides the text into chunks,

allowing threads to process them in parallel. Thus, MIMD machines are more

tolerant to the irregularity than SIMD machines, because the former machines can

issue different instructions to different processing elements. The DPAC algorithm

was deployed on many parallel machines such as the graphics processing unit

(GPU) [4, 5, 8, 9, 11, 12, 13], field programmable gate array (FPGA) [14, 15],

Cell Broadband Engine [16], and supercomputer [17]. Similar to the AC algo-

rithm, which has the cost O(z) of printing the output, the DPAC algorithm has

different time complexities for best and worst cases. Furthermore, owing to ir-

regular control flow that affects branch prediction accuracy and cache hits, search

throughput can vary according to the number of matching strings [9, 17].

3



The Parallel Failureless Aho-Corasick (PFAC) algorithm [18] extends the AC

algorithm [10] to achieve efficient parallelization on a GPU [19]. As compared

with CPUs, GPUs not only have higher peak memory bandwidths but also more

processing cores. Such rich computational resources are useful for accelerating a

memory-intensive problem. The PFAC algorithm creates a thread for every sym-

bol in the text to identify patterns starting at any location. Each thread manages

the current status of a deterministic finite state machine. Consequently, search

throughput decreases if each thread suffers from multiple state transitions in its

state machine. The time complexity for a thread of PFAC ranges from O(1) to

O(M), where M denotes the longest length of the patterns to be searched simul-

taneously [18]. Therefore, performance degradation occurs if the text has many

partially matching patterns and their matching lengths are relatively long. Such

unstable search throughput is not desirable for packet and genome analyses, which

must often process high volumes of data. Further, GPUs have smaller memory

capacity than CPUs; consequently, maximum search throughput can be restricted

by the peak bandwidth of the PCI Express bus, which can diminish the benefits of

high-bandwidth video memory.

Another acceleration approach is to exploit bit parallelism in string search.

An advantage of the bit-parallel algorithm [20] is that the number of memory

references is determined only by the text and pattern lengths. In other words, the

bit-parallel algorithm has the same best- and worst-case time complexity, so that it

can provide highly robust throughput when faced with various patterns varying in

the text and pattern contents. The bit-parallel algorithm was extended by Prasad

4



et al. [21, 22] to simultaneously search multiple patterns of the same length.

In this paper, to realize fast string search for maximizing stable search through-

put, we present a high-throughput method that accelerates a bit-parallel algorithm

on a multicore CPU. Our method extends the Prasad’s algorithm [21, 22] such

that it simultaneously searches multiple patterns of different lengths. In particu-

lar, our method is unique in regularizing both control flow and data structures for

string search, namely an inherently irregular problem. This regularization facili-

tates the exploitation of the latest SIMD instructions that are useful to maximize

the performance on a CPU. Our method efficiently searches multiple patterns of

different lengths by using a data padding scheme that hides the irregularity of pat-

tern lengths. This scheme is integrated into a two-level parallel algorithm that

exploits not only data parallelism via OpenMP directives [23] but also bit par-

allelism via the latest vector instruction set called Advanced Vector Extensions

(AVX) 2 [24]. The latter increases search throughput on a CPU core, while the

former increases search throughput on a CPU socket. Our CPU-based solution

demonstrates competitive search throughput without using special hardware de-

vices such as the GPU and FPGA.

In addition to this introduction, this paper is organized as follows. Section

2 presents related studies in the area of string search. Section 3 summarizes the

bit-parallel algorithm. Section 4 presents our proposed method, and shows how it

increases the search throughput of the bit-parallel algorithm. Section 5 presents

experimental results, and Section 6 provides the conclusions and suggestions for

future work.

5



2. Related Work

Table 1 shows a comparison of previous string matching implementations with

their deployed hardware. Prasad et al. [21, 22] extended the bit-parallel algorithm

[20] to search multiple biological patterns in the text simultaneously. Their algo-

rithm assumes that all simultaneously searched patterns have the same length and

a word is large enough to store the patterns. Because the current x64 architec-

ture uses 64-bit words, the total length of simultaneous patterns must therefore be

less than 64 symbols. In contrast, our AVX-based algorithm covers multiple pat-

terns of up to 256 symbols in length and accepts simultaneous patterns of different

lengths. Our algorithm also exploits data parallelism via OpenMP directives, as

detailed in Section 4. Xu et al. [25] implemented Prasad’s algorithm on a GPU

and achieved a search throughput of 0.1 Gbps. A similar bit-parallel algorithm

was presented by Yadav et al. [26]. Bit-parallel algorithms have a disadvantage

in terms of the pattern size. The total length m̂ of patterns must be less than the

word size.

Külekci [27] presented a filter-then-search algorithm called Streaming SIMD

Extensions filter (SSEF) for searching a single pattern. The SSEF algorithm re-

duced time complexity by detecting possible matches at low cost, which were then

given to the succeeding verification process. This algorithm was implemented us-

ing Streaming SIMD Extensions (SSE) instructions [33] to accelerate filtering

process for single pattern matching. The SSEF algorithm was ten times faster

than the bit-parallel length independent matching (BLIM) algorithm [34], which

overcame the word size limitation of the bit-parallel algorithm. However, the time

6



Table 1: Summary of reported search throughputs and their deployed hardware. q denotes the
number of patterns and m denotes the average of pattern lengths. The search throughput is given
by n/T , where n is the text size and T is the execution time including the data transfer time needed
for GPU-based implementations.

Work Hardware Throughput Text size Pattern size
(Gbps) n (MB) q m

This paper 4-core Core i7 7.7 4,096 10 20
Prasad [21] 2-core Pentium D 0.06–0.08 24 10 10
Prasad [22] 2-core Pentium D 0.05 122 7 n/a
Xu [25] GeForce 310M 0.1 4 64 80
Yadav [26] 2-core Pentium D 0.01 0.2 40 4
SSEF [27] Xeon 82 30 1 2,000
MPSSEF [28] 4-core Core i7 0.4–0.6 4 10,000 1,024
MBLIM [34] Xeon 0.04 100 32 n/a
MTMP-SG [29] Two 4-core Xeon 0.1–0.4 100 25,000 7
PFAC [30] GeForce GTX 295 4 0.2 994 23
PFAC [18] GeForce GTX 580 3–15 256 1,998 21
Vasiliadis [13] GeForce GTX 480 30 n/a 50,000 20
Oh [31] GeForce GTX 480 3–15 3,180 34,915 n/a
Zha [8] Tesla GT 200 9 904 33 17
Tumeo [12] Four Tesla C2050 12–48 100 190,000 16
Tumeo [9] Two Xeon X5560 3–20 100 190,000 16
AC-opt [17] Cray XMT 28 100 190,000 16
AC-opt [16] Cell/B.E. 3–4.5 4 20,000 8
Schatz [6] GeForce 8800 GTX 0.4–0.5 1* 312,500 800
Michailidis [15] FPGA 0.1 30 1 1,024
Singaraju [32] FPGA 3 n/a 1,237 13
*: 1 base pair = 2 bits

complexity of the SSEF algorithm ranges from O(nm) to O(n/m) according to

preprocessing effects, where n is the length of the text and m is that of the pattern.

The SSEF algorithm was extended by Faro and Külekci [28] for multiple pattern

matching. Their achieved search throughput ranged from 0.4 to 0.6 Gbps on a

Core i7 processor.

Oh and Ro [29] presented multi-threaded multiple pattern matching with suffix

grouping (MTMP-SG), which extended the Wu-Manber algorithm [35] to over-

come performance degradation that appear when the text includes many matching

7



patterns. Their extended algorithm groups the target patterns in terms of their

suffixes, and distributes the patterns over multiple threads. Their CPU-based im-

plementation ran at a throughput of up to 0.4 Gbps, which was faster than a GPU-

accelerated AC implementation when searching more than 5,000 patterns simul-

taneously. They concluded that their implementation could be accelerated using

SIMD instructions, which we tackled in the present work.

The PFAC algorithm [18] extended the AC algorithm to achieve efficient par-

allelization on a manycore GPU. To realize this, the PFAC algorithm eliminated

the backtracking procedure of the AC algorithm (i.e., the failure transitions in the

automaton), because using backtracking includes branches that can cause thread

divergence [36] during highly threaded executions. Instead of backtracking, the

PFAC algorithm creates a thread for every symbol in the text. Owing to the highly

threaded GPU architecture, threads that encounter a failure can be quickly disap-

peared [18], and these threads can give their occupying resources to remaining

unprocessed threads. The PFAC algorithm was 30% faster than the DPAC algo-

rithm, which assigns a larger chunk of text data to each of threads. A similar re-

sult was reported in [37]. For 190,000 patterns, their GPU-based implementation

achieved a search throughput of 15 Gbps on a GeForce GTX 580; however, search

throughput decreased to 3 Gbps if the text included higher numbers of partially

matching data (because threads cannot rapidly complete their execution). Lin and

Liu [14] implemented a similar parallel failureless algorithm on an FPGA.

Vasiliadis et al. [13] presented a DFA-based algorithm for inspecting net-

work packets in real-time. They designed an efficient packet buffering scheme

8



for transferring packets from the main memory to the video memory. Using a

GeForce GTX 480 card, their GPU-based implementation achieved 30 Gbps for

50,000 patterns. Their algorithm was designed for network inspection systems,

which assemble the text from packets flowing over the network. For such incom-

ing packets, the search throughput can be maximized by increasing the pattern

size rather than the text size. A DFA for 50,000 patterns occupied approximately

800 MB of device memory, which restricted the text size.

Tumeo et al. [9] accelerated the AC algorithm using clusters of CPUs and

GPUs. Their DPAC algorithm requires halos (i.e., overlapping regions) to find

matching strings that cross the boundaries of decomposed text. Because halos

are redundantly loaded by multiple threads, the efficiency of parallel execution

decreases as we increase the number of divisions for a fixed text size. Further, for

text that has many pattern matches, search throughput decreased to 2 Gbps due to

a higher number of cache misses [9] and the increasing cost O(z) of printing the

output. A similar data-parallel algorithm called AC-opt was presented by Villa

et al. [16, 17]. They confirmed that search throughput was unstable on a Xeon

machine, but stable on a 128-processor Cray XMT, which had a high-efficient

thread scheduler that avoids pipeline stalls caused by irregular memory access.

Oh et al. [31] and Zha and Sahni [8] implemented a similar DPAC approach on a

GeForce GTX 480 GPU and a Tesla GT 200 GPU, respectively.

Tran et al. [11] presented a GPU-accelerated implementation of the AC al-

gorithm that takes advantage of the memory hierarchy. Their implementation

achieved a search throughput of 127 Gbps on a GeForce GTX 285 GPU. How-

9



ever, this throughput did not consider the data transfer overhead incurred during

copying input and output data between CPU and GPU. Considering this over-

head, search throughput of PFAC [18] reduced from 143 Gbps to aforementioned

3–15 Gbps, which was close to those achieved by other GPU-based approaches

[4, 12].

Schatz and Trapnell [6] employed a suffix tree to accelerate string search. Be-

cause this approach arranges text data in a tree, it is a different approach from just

using raw text data. Although a suffix tree of a text enables fast string operations,

it generally requires more space than storing the raw text. The search throughput

was around 0.5 Gbps on a GeForce GTX 8800 card.

In summary, our bit-parallel algorithm differs from previous algorithms in reg-

ularizing both control flow and data structures to achieve stable search throughput

for arbitrary data. This contributes to utilize the latest SIMD instruction set for

string search, but its SIMD width limits the pattern size.

3. Bit-Parallel Algorithm

The bit-parallel algorithm [20] accelerates string search for a single pattern by

processing multiple comparators that are responsible for identifying matches in

contiguous regions of the text. To exploit bit parallelism in the search procedure,

this algorithm assumes that the pattern length is at most word length. There are

two variations called shift-or and shift-and algorithms, which define true to be 0

and 1, respectively. Our algorithm is based on the shift-or algorithm, which has

fewer bitwise instructions than the shift-and algorithm.

10



AEEE

0
s

1
s

2
s

4
s

3
s

*

Figure 1: A nondeterministic finite automaton for pattern “AEEE;” note that * on the state transi-
tion from state s0 to itself represents any arbitrary symbol in the given language.

In the following discussion, let n and m be the length of text t and pattern

p, respectively. Further, let ti and pi be the i-th symbol of text t and pattern p,

respectively, where i ≥ 1.

As a preprocessing phase, the bit-parallel algorithm creates a nondeterministic

finite automaton from the given pattern, an example of which is shown in Fig. 1.

This automaton has m states s1, s2, . . . , sm in addition to initial state s0. State si

corresponds to i-th symbol pi of the pattern, where 1 ≤ i ≤ m. In other words,

si is the current state of the automaton when the first i symbols of the pattern

match the text. We assume si = 0 if si is the current state of the automaton

(otherwise, si = 1). String search can then be realized by updating bit sequence

S = smsm−1 . . . s1 for every input symbol from text t. The bitwise operation for

this update can be given by

Si = (Si−1 ≪ 1) | B[ti], (1)

where operators ≪ and | represent logical left shift and logical disjunction, re-

spectively, Si is the bit sequence after reading i-th symbol ti, and S0 = 11 . . . 1.

Further, B is a table that consists of the appropriate bitmasks for the input sym-

11



Input character

G

T

C

A

T

C

GP
ro

ce
ss

in
g
 s

te
p

Bit sequence

1111

1110

1101

1011

0110

1101

1111

Figure 2: The behavior of the bit-parallel algorithm for text “GTCATCG” and pattern “TCAT;”
note that 0s in the bit sequence indicate matches between the text and pattern; the bit sequence
after the fifth input symbol becomes 0110, where the most significant bit of 0 indicates a full
match and the least significant bit of 0 indicates a prefix match of length 1.

bols. Let B[x] = bmbm−1 . . . b1 be the bitmasks for input symbol x. Bitmasks

B[x] can be given by

bi[x] =


0, if x = pi,

1, otherwise.
(2)

Thus, as illustrated in Fig. 2, a shift operation realizes a state transition of the

automaton, and bitmasks B validate the transition according to input symbol ti.

3.1. Simultaneously Searching for Multiple Patterns

Prasad et al. [21, 22] extended the bit-parallel algorithm to simultaneously

search for multiple patterns of the same length m. Let q (≥ 2) be the number

of patterns to be searched simultaneously. Given q patterns, they constructed q

automata and generated a bit sequence in which a bit corresponds to a state of the

automata; as shown in Fig. 3(a), the bit sequence is based on cyclic arrangement

sqms
q−1
m . . . s1ms

q
m−1s

q−1
m−1 . . . s

1
1, where sji represents the i-th state of the automaton

12



generated from the j-th pattern with 1 ≤ i ≤ m and 1 ≤ j ≤ q. An advan-

tage of this cyclic arrangement is the simplicity of bitwise operations required to

update the states of the automata. Because the states of the same automaton are

assigned to every q bits of the sequence, these states can be updated using bitwise

operations

Si = (Si−1 ≪ q) | B[tj]. (3)

Note that the bit sequence can also be generated using a block arrangement,

as shown in Fig. 3(b). Using this arrangement, the bit sequence can be given

by sqms
q
m−1 . . . s

q
1s

q−1
m sq−1

m−1 . . . s
1
1; however, this arrangement requires complicated

operations to update the states of the automata. For example, shift operations must

not be applied to a boundary of the bit sequence (i.e., sq1s
q−1
m ) where neighboring

bits belong to different automata. Consequently, the bit sequence consists of bits

to be shifted and those not to be shifted, making bitwise operations complicated.

4. Proposed Method

Our algorithm extends the bit-parallel algorithm [20] to simultaneously search

for patterns of differing lengths. Key differences between our algorithm and the

original bit-parallel algorithm are summarized as follows:

1. Simultaneous search for multiple patterns via AVX2 instructions [24].

2. Data structure capable of rapid identification of matching patterns.

3. Data parallel search via OpenMP directives [23].

13



1

1
s

2

1
s

3

1
s

4

1
s

1

2
s

2

2
s

3

2
s

4

2
s

1

3
s

2

3
s

3

3
s

4

3
s

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b

10
b

11
b

12
b

(a)

1

1
s

1

2
s

1

3
s

2

1
s

2

2
s

2

3
s

3

1
s

3

2
s

3

3
s

4

1
s

4

2
s

4

3
s

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b

10
b

11
b

12
b

(b)

Figure 3: Bit arrangement [21, 22] for simultaneously searching for multiple patterns with (a)
a cyclic arrangement and (b) a block arrangement for q = 4 patterns of length m = 3. The
colored block below each array element represents the correspondence between the element and
its responsible pattern.

Inputs to our method are text t, q patterns p1, p2, . . . , pq, and table B. Our

method outputs numerical sequence R, which stores search results. Sequence R

consists of n integers whose values range from 0 to q. The i-th value Ri of R is

given by Ri = j if text t matches the pattern pj (1 ≤ j ≤ q) and its last matching

symbol is the i-th symbol of text t. Value Ri equals zero if there is no matching

pattern ending at the i-th symbol of the text.

In the discussion below, let mj be the length of the j-th pattern, where 1 ≤

j ≤ q. Also, note that the data structure representing R does not accept multiple

patterns to be matched with the same ending location. Consequently, our method

assumes that patterns ending with the same suffix are not processed simultane-

ously. Accordingly, patterns with a common suffix must be grouped into different

sets to process them sequentially but with different patterns.

14



Similarly, there are two assumptions regarding the length and number of si-

multaneously searched patterns; these assumptions are

q ≤ 32, (4)

(M − 1) · q ≤ 224, (5)

where M is the maximum length of q simultaneous patterns, which is given by

M = max1≤j≤q mj . Details are provided below.

4.1. Simultaneously Searching for Multiple Patterns via AVX2

Our method realizes vectorized search using AVX2 instructions [24] to achieve

simultaneous search for more patterns of longer lengths. AVX2 provides a SIMD

instruction set and is available on the Intel’s Haswell architecture. The AVX2 in-

struction set includes floating-point and integer operations for 256-bit vector data.

Consequently, AVX2 accepts patterns four times longer than that of x64 scalar

instructions, which operate with 64-bit words.

To simplify vector operations, our method employs the cyclic arrangement

scheme presented by Prasad et al. [21, 22]. Our approach extends their original

scheme by enabling efficient search for patterns of different lengths (details are

presented below). The logical shift and disjunction operations needed for Eq. (3)

can be implemented with the mm256 slli epi32() and mm256 or si256()

mnemonics, respectively.

15



4.2. Data Structure for Rapidly Identifying Matching Patterns

Key issues that must be resolved for simultaneously searching patterns of dif-

ferent length include the following:

1. Adapting to the cyclic arrangement scheme.

2. Rapidly identifying matching patterns.

In regards to issue 1., short patterns create automata that consist of fewer

states. Therefore, the original scheme cannot be directly used for patterns of

differing lengths. Consequently, a data padding scheme is required to adapt the

cyclic scheme to patterns of different length. A naive padding scheme may add

dummy bits at the tail of patterns, but this scheme goes against the simplicity of

the updating operation shown in Eq. (3), because the states of the same automaton

do not appear at regular intervals in the bit sequence.

In contrast, our method adds dummy bits at the head of patterns, as shown

in Fig. 4. This data padding approach maintains the simplicity of the updating

operations; however, the bitmasks must be adapted to this scheme to handle the

dummy bits (i.e., the dummy states in the automata). In other words, bitmasks B

must be modified such that they validate any transition to the dummy states for

an arbitrary symbol. For example, bitmask for the i-th bit must be given as 0. In

general,

b(i−1)q+j = 0, for all 1 ≤ j ≤ q and for all 1 ≤ i ≤ M −mj. (6)

16



AEEE 1

0
s

1

1
s

1

2
s

1

4
s

1

3
s

*

GG 3

0
s

3

1
s

3

2
s

*

AEE 2

0
s

2

1
s

2

2
s

2

3
s

*

(a)

1

1
s

1

2
s

2

1
s

1

3
s

2

2
s

3

1
s

1

4
s

2

3
s

3

2
s

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

9
b

10
b

11
b

12
b

0 0 0

(b)

Figure 4: Data padding scheme for different pattern lengths with (a) an automata for three example
patterns “AEEE,” “AEE,” and “GG” and (b) a bit sequence of length 12 after data padding; in this
example, b2, b3, and b6 are dummy bits set to 0 to validate a state transition for arbitrary symbols.

Similar to the bitmasks, the corresponding part of bit sequence S0 must be initial-

ized with 0.

We next discuss issue 2., i.e., how matching patterns can be identified via

our method. In the original cyclic scheme [21, 22], we can easily identify the

matching pattern pj (1 ≤ j ≤ q) by finding si = 0 from the bit sequence (i.e.,

checking if the current state is an accepting state), then computing j = i mod p

(i.e., specifying the automaton that has the detected accepting state); however, this

strategy cannot be directly used in our method, because dummy states could be

17



1

1
s

1

2
s

2

1
s

1

3
s

2

2
s

3

1
s

1

4
s

2

3
s

3

2
s

216
b

225
b

256
b

1
b

… ……
215
b

0 0 011 1 … 0 0 0…

Figure 5: Our data structure, in which two different sets of dummy bits are added to the most
significant bits and the least significant bits; dummy bits added to the least significant bits are set
to 0, as mentioned in Fig. 4, while in contrast, dummy bits added to the most significant bits are
set to 1 to invalidate accepting bits that do not correspond to any patterns.

detected as accepting states. To avoid this invalid dummy-state detection, we need

a filtering procedure that eliminates dummy bits before investigation, but such a

preprocessing procedure complicates the search process.

The key approach here is a static assignment of accepting states to specific

bits. Our method assumes that accepting bits only appear in the most significant

32 bits: b256b255 . . . b225, as depicted in Fig. 5. This assumption introduces ad-

ditional dummy bits that are added to the most significant bits, i.e., if q < 32,

we modify bitmasks B such that dummy bits that do not correspond to any au-

tomata are always set to 1. In other words, the bitmasks invalidate any transi-

tion from an accepting state to a dummy state. The modification to dummy bits

b256b255 . . . b225+q is given by

bi = 1, for all i > 224 + q. (7)

Our static assignment scheme also has the advantage of acceleration. Because

the accepting states appear only in the most significant 32 bits, we can apply the

tzcnt instruction of AVX2, which accepts a 32-bit unsigned integer value and re-

18



turns its trailing zero count from the least significant bit. More specifically, it can

rapidly identify the location of 1 from the least significant bit. Consequently, we

can find the matching pattern by using the tzcnt instruction with a 32-bit value

reversed from the most significant 32 bits of current bit sequence Si. Note that

Intel’s CPU architectures before Ivy Bridge do not support AVX2, but the tzcnt

instruction can be implemented with two instructions of the SSE instructions [33],

i.e., tzcnt u32(x) can be replaced with mm popcnt u32((˜x)&(x-1)).

The data structure described above has a limitation on the length and number

of simultaneous patterns. First, Eq. (4) indicates that at most 32 patterns can

be processed simultaneously, because the accepting states are placed in the most

significant 32 bits of a 256-bit vector. Second, Eq. (5) limits word length. In our

method, all M − 1 states except for the initial state of q automata are stored in the

vector of 224 bits.

4.3. Data-Parallel Search via OpenMP Directives

To maximize the performance on a multicore CPU, our method exploits data

parallelism of the search algorithm by using OpenMP directives. Our method di-

vides text t into c chunks, where c is the number of CPU cores, which are assigned

to the CPU core. Similar to Tumeo et al. [9], we place extra ghost regions to

find matches crossing a boundary of the decomposed region. Because our method

searches multiple patterns simultaneously, the ghost region size is given by M−1,

where M is the maximum length of the simultaneous patterns.

19



5. Experimental Results

To evaluate the performance of our method, we measured search throughput

ρ = n/T of the following six implementations: (1) our method, (2) our naive

method (with a naive padding scheme), (3) PFAC-GPU r1.2 [18], (4) PFAC-CPU

r1.2 [18], (5) MultiFast v1.4.2 [38], and (6) DP-MultiFast, namely a data-parallel

version of MultiFast. The use of T represents the execution time spent for per-

forming string search. PFAC-GPU and PFAC-CPU implement the PFAC algo-

rithm [18] on a GPU and a multicore CPU, respectively. The PFAC-CPU ap-

proach was a parallel implementation that exploited data parallelism by dividing

the text into several chunks. MultiFast is an implementation of the AC algorithm;

similar to PFAC-CPU, we extended this implementation to use all CPU cores via

OpenMP directives, so that we used DP-MultiFast as a DPAC implementation.

Note that T excluded the load time of the text and the initialization time needed to

create the appropriate bitmasks for the patterns. Also note that the execution time

of the PFAC-GPU approach included the data transfer time required to copy data

between CPU and GPU.

Table 2 shows the specifications of our experimental environment. We used

CUDA 4.2 [36] for PFAC-GPU because this implementation could not be com-

piled with the latest CUDA 5.5. Conversely, our experimental GPU required the

latest driver to run kernels, so we used the latest driver distributed with CUDA

5.5. We implemented the tzcnt instruction via the popcnt instruction because GCC

4.8.1 does not support the tzcnt instruction. For our measurements, we activated

Hyper-Threading technology on the deployed CPU such that eight threads were

20



Table 2: Experimental setup.
Item Specification
OS Ubuntu 12.04.3
CPU Intel Core i7 4770K
Main memory DDR3-1600 16 GB
GPU NVIDIA GeForce GTX 780
Video memory GDDR5 3 GB
I/O bus PCIe 3.0 x16
Compiler GCC 4.8.1
Optimization option -O2
CUDA Driver 5.5
CUDA Runtime 4.2

created for the CPU-based implementations except MultiFast.

5.1. Analysis of Search Throughput

To compare our method with the PFAC algorithm, we measured search through-

put ρ while varying length l and ratio x of prefix matches. Ratio x here is given

by n′/n, where n′ is the cumulative number of patterns that have a prefix match

in the text. We used dummy text to exhaustively investigate l and x; the dummy

text consisted of repeating sequence “abcdefghij” and had a data size of 512 MB.

As for the simultaneous patterns, we used q = 10 patterns consisting of mj = 20

symbols, where q represents the number of patterns to be searched and 1 ≤ j ≤ q.

For the pattern, we used a permutated version of the basic sequence that partially

replaced lowercase letters with uppercase letters to control the value of l.

For example, we used pattern “abcDEFGHIJABCDEFGHIJ” for l = 3 be-

cause the first three symbols match the text. Further, we used the cyclic per-

mutated versions of the basic sequence to control the value of x. For l = 3

21



0

2

4

6

8

10

12

01 101 101 101 101 101 101 101 101 101 10

0 10 20 30 40 50 60 70 80 90 100

S
ea

rc
h

 t
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Top column: length l of prefix matches (symbol)

Bottom column: ratio x of prefix matches (%)

Our method Naive method PFAC-GPU PFAC-CPU DP-MultiFast MultiFast

Figure 6: Comparing measured search throughput for our method (with and without our padding
scheme) to that of PFAC-GPU, and PFAC-CPU. Ten patterns of length 20 were used for measure-
ment.

and x = 0.2, for example, we used “abcDEFGHIJABCDEFGHIJ” and “bcdE-

FGHIJABCDEFGHIJA” as partially matching patterns of ten simultaneous pat-

terns, the remaining nonmatching patterns set appropriately as “CD . . . B,” “DE

. . . C,” “EF . . . D,” “FG . . . E,” “GH . . . F,” “HI . . . G,” “IJ . . . H,” and “JA . . . I.” We

have x = 0.2 because the first two patterns partially match to every ten symbols

in the text. Note that the execution time required to create bitmasks for q = 10

patterns was approximately 0.15 ms, and thus was not a performance bottleneck

for our method.

Figure 6 presents search throughput measured for our proposed method (with

and without our padding scheme), PFAC-GPU, PFAC-CPU, MultiFast, and DP-

MultiFast. Our naive method used a cyclic padding scheme that simply added

dummy bits from the most significant part of the bit sequence. In this scheme,

22



accepting bits do not appear in the contiguous region; therefore, we detect ac-

cepting automata using bitwise operations. Note that our naive method used the

same padding scheme as Prasad’s algorithm [21, 22]. We think that our naive

method can be roughly regarded as Prasad’s algorithm, but they may not be same

because it is not clear how Prasad’s algorithm identifies the matching pattern from

q candidates.

From the figure, we observe that our method achieved robust throughputs ρ of

approximately 7.7 Gbps for any length l and ratio x of matches. We also found that

our data padding scheme increased ρ from 3.8 to 7.7 Gbps, doubling the search

throughput. This increase was due to the simplified procedure for specifying the

matching pattern from q = 10 patterns. Owing to this simplification, the algorithm

reduced the number of instructions as compared with the naive padding scheme.

Our naive method spent long time to identify accepting automata, because their

accepting bits existed over the two 32-bit contiguous words of the vector. Thus,

search throughput increased for any l and x, and the overhead of our data padding

scheme was negligible.

In contrast, the search throughput of the PFAC algorithm depends on l re-

gardless of whether its implementation runs on a CPU or GPU. Search through-

put ρ decreased as length l of the matching part increased. This performance

degradation was due to the amount of computation per thread, which ranged from

O(1) to O(M) and increased with l, i.e., as the matching part increased in length,

threads had to process an increased number of state transitions in their respec-

tive automata. Such a series of state transitions must be iteratively processed due

23



to the elimination of failure transitions. However, threads are allowed to termi-

nate immediately when finding a mismatch from its responsible starting position.

Therefore, the PFAC algorithm is efficient for text data that have a few matching

patterns.

The throughput of PFAC-CPU also depends on ratio x. As we increased x,

more automata had to process more state transitions. PFAC-GPU was robust

against such a large number of automata, because the GPU concurrently processes

tens of thousands threads; however, PFAC-CPU was processed by eight threads,

suffering from an increased amount of computation.

Figure 6 shows that the search throughput of DP-MultiFast was unstable, rang-

ing from 3.6 to 9.1 Gbps. In addition, DP-MultiFast showed a different behav-

ior compared with PFAC; with DP-MultiFast, the search throughput increased

with length l of prefix matches. Because DP-MultiFast processes failure transi-

tions, backtracking overhead occurs after loading a nonmatching symbol. As l in-

creased, the occurrence of this overhead became relatively rare, increasing search

throughput. However, similar to the behavior reported in [9], search throughput

progressively decreased as we increased x. The same behavior was observed for

MultiFast, which was approximately 4.5 times slower than DP-MultiFast.

We next investigated how our achieved throughput was robust against the im-

balance of pattern lengths. As shown in Fig. 7, we fixed average length l and ratio

x of matches, but varied length mj (1 ≤ j ≤ q) of simultaneous patterns. We used

q = 3 patterns whose first (mj − 1) symbols matched the given text. Because the

total length
∑

j mj of patterns was fixed as 103 symbols, 100 symbols of the three

24



0

2

4

6

8

68 65 62 59 56 53 50 47 44 41 38 35

1 4 7 10 13 16 19 22 25 28 31 34

S
ea

rc
h

 t
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Top column: length m1 of the first pattern

Bottom column: length m3 of the third pattern

Our method Naive method PFAC-GPU PFAC-CPU DP-MultiFast MultiFast

Figure 7: Search throughput measured while varying lengths m1 and m3 of simultaneous patterns;
length m2 of the second pattern is fixed at m2 = 34. The text data had a data size of 512 MB.

patterns matched the text. For simplicity, we fixed length m2 = 34 of the second

pattern while remaining lengths m1 and m3 were varied accordingly.

In the figure, the search throughput of our method proved robust against the

imbalance of pattern lengths. Conversely, the PFAC-GPU approach increased

search throughput from 4.2 to 5.7 Gbps, as the lengths of the simultaneous patterns

became closer. This increase was the net effect of load balancing that occurred

between threads. When m1 = 68 and m3 = 1, the number of state transitions per

thread were 0, 33, and 67 for the first, second, and third automata (i.e., patterns),

respectively. In contrast, when m1 = 35 and m3 = 34, the number of state

transitions were 34, 33, and 33, respectively. Because the GPU issues instructions

for 32 consecutive threads (these groups are called warps [36]), the latter case

allowed threads in the same warp to have a similar workload and thus achieve

25



higher throughput than the former case. As opposed to Fig. 6, Fig. 7 show that

our method was faster than PFAC-GPU. This was due to the occurrence of long

prefix matches. Length l of prefix matches in Fig. 7 was larger than that in Fig. 6:

34 ≤ l ≤ 67 in Fig. 7, whereas 0 ≤ l ≤ 10 in Fig. 6.

Similar to our results, the search throughputs of PFAC-CPU, MultiFast, and

DP-MultiFast were also robust against the combination of pattern lengths, but they

performed at best 1.4, 0.6, and 3.1 Gbps, respectively. The number of symbols

loaded by PFAC-CPU is determined by the length of matching strings, which

we fixed at 100 symbols. Consequently, search throughput did not significantly

change even though the workload was imbalanced. Further, the load-balancing

issue described above did not appear in the CPU-based implementations, which

independently run different threads (i.e., issues different instructions to running

threads) by exploiting data parallelism of the search algorithm.

5.2. Case Study with Real Data

As a case study, we measured search throughput using a genome dataset [39]

and a corpus dataset [40] in the area of natural language processing (NLP). The

genome dataset consisted of full-length complementary DNA of human; because

genome datasets consist of only four symbols (i.e., A, T, G and C), the text in-

cludes many partial matches. In contrast, the NLP corpus dataset consisted of

239 symbols, including uppercase and lowercase letters, numbers, and control

characters. Consequently, corpus datasets usually have far fewer partial matches

than genome datasets. For our measurements, we eliminated the header of the

26



0

2

4

6

8

10

64 128 256 512 1024 2048 4096

S
ea

rc
h

 t
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Text size (MB)

Our method Naive method PFAC-GPU PFAC-CPU DP-MultiFast MultiFast

(a)

0

2

4

6

8

10

12

64 128 256 512 1024 2048 4096

S
ea

rc
h

 t
h

ro
u

g
h

p
u

t 
(G

b
p

s)

Text size (MB)

Our method Naive method PFAC-GPU PFAC-CPU DP-MultiFast MultiFast

(b)

Figure 8: Search throughput measured with different text sizes. Results for (a) a genome dataset
and (b) an NLP corpus dataset. PFAC-GPU and PFAC-CPU failed to obtain search results for
large text with data sizes larger than 512 MB and 1024 MB, respectively.

genome dataset; similarly, non-ASCII characters (such as Greek characters) were

eliminated from the corpus dataset

Figure 8 shows search throughputs for the aforementioned six implementa-

tions, measured with varying text sizes ranging from 64 to 4096 MB. We used

q = 8 patterns for both datasets. For the genome dataset, we used patterns consist-

ing of 26–28 symbols extracted randomly from H. sapiens|ENST00000408996.

27



For the corpus dataset, we used patterns of random words composed of 5–10 sym-

bols, including director, Americans, adventure, Bolshevism, class, ridden, think,

and workingmen.

From the figure, we observe that our data padding scheme doubled search

throughput for real datasets; however, the achieved throughput was 7.7 Gbps,

whereas that of PFAC-GPU was 9.5 and 9.1 Gbps for the genome dataset and

corpus dataset, respectively. Owing to the exhaustion of the video memory, PFAC-

GPU failed to obtain search results for large text with data sizes larger than 512 MB.

In contrast, our method ran on the CPU and successfully produced search results

for such large text (as long as the text could be stored in main memory).

For the NLP corpus dataset, the PFAC-CPU approach achieved a throughput

of 6.9 Gbps, slightly lower than that of our achieved throughput; however, the

throughput for the genome dataset decreased to 4.7 Gbps. As compared with the

corpus dataset, the genome dataset usually produced many partial matches be-

cause of its lack of symbols; such a distribution caused performance degradation

in the PFAC algorithm (as noted in the performance analysis presented in Section

5.1).

Eqs. (4) and (5) are the disadvantages of our method, which limit the length

and number of patterns. To evaluate this point, we investigated search through-

put with different numbers of patterns. We randomly selected patterns from the

text. The length of patterns was fixed to 10. Figure 9 shows search through-

puts measured with 1 ≤ q ≤ 1024. Given many patterns that cannot fit into a

word, our method must be iterated with varying the patterns. Consequently, the

28



0

2

4

6

8

10

1 2 4 8 16 32 64 128 256 512 1024

S
ea

rc
h

 t
h

ro
u

g
h

p
u

t 
(G

b
p

s)

q: Number of patterns

Our method Naive method PFAC-GPU PFAC-CPU DP-MultiFast MultiFast

(a)

0

2

4

6

8

10

1 2 4 8 16 32 64 128 256 512 1024

S
ea

rc
h

 t
h

ro
u

g
h

p
u

t 
(G

b
p

s)

q: Number of patterns

Our method Naive method PFAC-GPU PFAC-CPU DP-MultiFast MultiFast

(b)

Figure 9: Search throughput measured with different numbers of patterns. Results for (a) a genome
dataset and (b) an NLP corpus dataset. The data size of the text was 512 MB.

search throughput reduces to 1/k, where k represents the number of iterations

needed to process all of the patterns. As shown in Fig. 9, such iterations de-

creased search throughput when q ≥ 32, and our method turned out to be slower

than DP-MultiFast if the patterns did not satisfy Eqs. (4) and (5). Consequently,

our method may not be suitable for network inspection systems, which can deal

with many patterns for flowing packets.

For long patterns, we can select the part of the patterns such that they can be fit

29



into a word. The selected part is then searched by using our method as a filter, and

the rest of the patterns is verified on matching positions in the text. We believe

that the future architecture with longer vector registers will relax the limitation

on the length and number of patterns. For example, Xeon Skylake and Xeon Phi

Knights Landing processors support AVX-512, a 512-bit version of AVX.

As shown in Fig. 9, AC-based algorithms decreased search throughput as num-

ber q of patterns increased. This performance degradation shows how irregular

control flow affects search throughput. Because AC-based algorithms construct

a state machine from q patterns, the complexity of the state machine increases

with q. For example, each state have many outgoing transitions, which result in

complicated flow. Consequently, the irregularity of control flow can decrease the

search throughput of AC-based algorithms. This irregularity also explains why

DP-MultiFast decreased search throughput for the real data compared to the syn-

thetic data. For example, DP-MultiFast achieved more than 4 Gbps in Fig. 6, but

resulted in 3.2 Gbps in Fig. 8. For the synthetic data, we constructed the patterns

by permutation of the basic sequence. Consequently, the state machine for the

synthetic data has more regular state transitions than that for the real data. With

respect to the real data, the simplest state machine was generated when q = 1. As

shown in Fig. 9, such a simple state machine maximized the search throughputs

of AC-based algorithms.

In summary, our method achieves stable search throughput if the text and pat-

terns fit into the main memory and a word size, respectively. This robust stability

comes from the regularization of control flow and data structures. For large pat-

30



terns that cannot fit into a word, our method must be iterated until processing all

of the patterns. In contrast, PFAC, AC, and DPAC approaches can vary search

throughput according to the text and pattern contents. In particular, the length of

matches determines search throughput. Furthermore, PFAC can degrade search

throughput if the text has many partially matching patterns. We think that this

frequently occurs for datasets with a small alphabet size. Finally, AC and DPAC

approaches can decrease search throughput due to irregular control flow.

6. Conclusion

In this paper, we presented a high-throughput method for a bit-parallel algo-

rithm that realizes fast string search for robust throughput maximization. Our

method used AVX2 instructions to increase search throughput on a CPU core and

exploited the data parallelism of the search algorithm via OpenMP directives. Fur-

ther, our method was based on a data structure applicable for efficiently searching

multiple patterns of different lengths. Increasing efficiency was achieved by data

padding two parts of the bit sequence. Owing to our data padding scheme, only a

single instruction was needed to detect an accepting automaton.

In our experiments, we found that our method doubled search throughput by

padding dummy bits accordingly. We also found that our bit-parallel method

achieved robust throughput measures even when faced with variations in the text

and pattern contents. This robust stability comes from the regularization of con-

trol flow and data structures. As compared with the CPU implementation of the

PFAC algorithm, our method achieved 1.4 times higher throughput for a genome

31



dataset that had many partial matches between the text and patterns; however, our

method has a limitation on the total length of patterns, which must be large, but

smaller than the word size. Similar comparative results were obtained with the

GPU implementation of the PFAC algorithm, but our method was able to han-

dle large datasets that could not be stored in video memory. We think that our

regularization approach is useful to accelerate string search on a SIMD machine.

Our future work includes an investigation of approximated string search [41],

which is an improvement of the bit-parallel algorithm; this type of search has

proven effective in handling with biological sequences that include many errors

due to high-speed sequencers.

Acknowledgments

This study was supported in part by the Japan Society for the Promotion of Sci-

ence KAKENHI Grant Numbers 23300007 and 23700057 and the Japan Science

and Technology Agency CREST program, “An Evolutionary Approach to Con-

struction of a Software Development Environment for Massively-Parallel Com-

puting Systems.” We also thank Dr. Takehiko Kashiwagi of NEC Corporation

for his insights regarding our research. We are also grateful to the anonymous

reviewers for their valuable comments.

References

[1] G. Navarro, A guided tour to approximate string matching, ACM Computing

Surveys 33 (1) (2001) 31–88.

32



[2] S. Faro, T. Lecroq, The exact online string matching problem: A review

of the most recent results, ACM Computing Surveys 45 (2), article 13, 42

pages.

[3] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, S. Ioannidis,

Gnort: High performance network intrusion detection using graphics pro-

cessors, in: Proc. 11th Int’l Symp. Recent Advances in Intrusion Detection

(RAID’08), 2008, pp. 116–134.

[4] A. Tumeo, O. Villa, D. Sciuto, Efficient pattern matching on GPUs for in-

trusion detection systems, in: Proc. 7th Int’l Conf. Computing Frontiers

(CF’10), 2010, pp. 87–88.

[5] A. Tumeo, O. Villa, Accelerating DNA analysis applications on GPU clus-

ters, in: Proc. 8th Symp. Application Specific Processors (SASP’10), 2010,

pp. 71–76.

[6] M. C. Schatz, C. Trapnell, Fast exact string matching on the GPU, http:

//www.cbcb.umd.edu/software/cmatch/Cmatch.pdf.

[7] S. Gog, K. Karhu, J. Kärkkäinen, Multi-pattern matching with bidirectional

indexes, in: Proc. 18th Int’l Computing and Combinatorics Conf. (CO-

COON’12), 2012, pp. 384–395.

[8] X. Zha, S. Sahni, GPU-to-GPU and host-to-host multipattern string match-

ing on a GPU, IEEE Trans. Computers 62 (6) (2013) 1156–1169.

33



[9] A. Tumeo, O. Villa, D. G. Chavarrı́a-Miranda, Aho-Corasick string match-

ing on shared and distributed-memory parallel architectures, IEEE Trans.

Parallel and Distributed Systems 23 (3) (2012) 436–443.

[10] A. V. Aho, M. J. Corasick, Efficient string matching: An aid to bibliographic

search, Communications of the ACM 18 (6) (1975) 333–340.

[11] N.-P. Tran, M. Lee, S. Hong, Y. Choi, High throughput parallel imple-

mentation of Aho-Corasick algorithm on a GPU, in: Proc. IEEE 27th

Int’l Symp. Parallel and Distributed Processing Workshops and PhD Forum

(IPDPSW’13), 2013, pp. 1807–1816.

[12] A. Tumeo, S. Secchi, O. Villa, Experiences with string matching on the

Fermi architecture, in: Proc. 24th Int’l Conf. Architecture of Computing

Systems (ARCS’11), 2011, pp. 26–37.

[13] G. Vasiliadis, M. Polychronakis, S. Ioannidis, Parallelization and charac-

terization of pattern matching using GPUs, in: Proc. 6th IEEE Int’l Symp.

Workload Characterization (IISWC’11), 2011, pp. 216–225.

[14] W. Lin, B. Liu, Pipelined parallel AC-based approach for multi-string

matching, in: Proc. 14th Int’l Conf. Parallel and Distributed Systems (IC-

PADS’08), 2008, pp. 665–672.

[15] P. D. Michailidis, K. G. Margaritis, A programmable array processor archi-

tecture for flexible approximate string matching algorithms, J. Parallel and

Distributed Computing 67 (2) (2007) 131–141.

34



[16] O. Villa, D. P. Scarpazza, F. Petrini, Accelerating real-time string searching

with multicore processors, IEEE Computer 41 (4) (2008) 42–50.

[17] O. Villa, D. Chavarrı́a-Miranda, K. Maschhoff, Input-independent, scalable

and fast string matching on the Cray XMT, in: Proc. 23rd IEEE Int’l Parallel

and Distributed Processing Symp. (IPDPS’09), 2009, pp. 384–395.

[18] C.-H. Lin, C.-H. Liu, L.-S. Chien, S.-C. Chang, Accelerating pattern match-

ing using a novel parallel algorithm on GPUs, IEEE Trans. Computers

62 (10) (2013) 1906–1916, http://code.google.com/p/pfac/.

[19] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: A uni-

fied graphics and computing architecture, IEEE Micro 28 (2) (2008) 39–55.

[20] R. Baeza-Yates, G. H. Gonnet, A new approach to text searching, Commu-

nications of the ACM 35 (10) (1992) 74–82.

[21] R. Prasad, S. Agarwal, I. Yadav, B. Singh, A fast bit-parallel multi-patterns

string matching algorithm for biological sequences, in: Proc. Int’l Symp.

Biocomputing (ISB’10), no. 46, 2010, 4 pages.

[22] R. Prasad, A. K. Sharma, A. Singh, S. Agarwal, S. Misra, Efficient bit-

parallel multi-patterns approximate string matching algorithms, Scientific

Research and Essays 6 (4) (2011) 876–881.

[23] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Par-

allel Programming in OpenMP, Morgan Kaufmann, San Mateo, CA, 2000.

35



[24] Intel Corporation, Intel architecture instruction set extensions programming

reference, http://download-software.intel.com/sites/

default/files/managed/71/2e/319433-017.pdf (Dec.

2013).

[25] K. Xu, W. Cui, Y. Hu, L. Guo, Bit-parallel multiple approximate string

matching based on GPU, in: Proc. 1st Int’l Conf. Information Technology

and Quantitative Management (ITQM’13), 2013, pp. 523–529.

[26] I. Yadav, B. Singh, S. Agarwal, R. Prasa, An efficient bit-parallel multi-

patterns word searching algorithm through splitting the text, in: Proc. Int’l

Conf. Advances in Recent Technologies in Communication and Computing

(ARTCom’09), 2009, pp. 406–410.

[27] M. O. Külekci, Filter based fast matching of long patterns by using SIMD

instructions, in: Proc. Prague Stringology Conf. (PSC’09), 2009, pp. 118–

128.

[28] S. Faro, M. O. Külekci, Fast multiple string matching using streaming SIMD

extensions technology, in: Proc. 19st Symp. String Processing and Informa-

tion Retrieval (SPIRE’12), 2012, pp. 217–228.

[29] D. Oh, W. W. Ro, Multi-threading and suffix grouping on massive multiple

pattern matching algorithm, The Computer J. 55 (11) (2012) 1331–1346.

[30] C.-H. Lin, S.-Y. Tsai, C.-H. Liu, S.-C. Chang, J.-M. Shyu, Accelerating

36



string matching using multi-threaded algorithm on GPU, in: Proc. Global

Communications Conf. (GLOBECOM’10), 2010, 5 pages.

[31] Y. Oh, D. Oh, W. W. Ro, GPU-friendly parallel genome matching with tiled

access and reduced state transition table, Int’l J. Parallel Programming 41 (4)

(2013) 526–551.

[32] J. Singaraju, J. A. Chandy, FPGA based string matching for network process-

ing applications, Mircoprocessors and Microsystems 32 (4) (2008) 210–222.

[33] Intel Corporation, Intel SSE4 Programming Reference, http:

//software.intel.com/sites/default/files/m/8/b/

8/D9156103.pdf (Jul. 2007).

[34] M. O. Külekci, BLIM: A new bit-parallel pattern matching algorithm over-

coming computer word size limitation, Mathematics in Computer Science

3 (4) (2010) 407–420.

[35] S. Wu, U. Manber, Fast text searching allowing errors, Communications of

the ACM 35 (10) (1992) 83–91.

[36] NVIDIA Corporation, CUDA C Programming Guide Version 6.0, http:

//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_

Guide.pdf (Feb. 2014).

[37] S. Arudchutha, T. Nishanthy, R. G. Ragel, String matching with multicore

CPUs: Performing better with the Aho-Corasick algorithm, in: Proc. 8th

37



IEEE Int’l Conf. Industrial and Information Systems (ICIIS’13), 2013, pp.

231–236.

[38] K. Kanani, MultiFast: Multiple string search via Aho-Corasick C library,

http://sourceforge.net/projects/multifast/ (2013).

[39] R. Yamashita, H. Wakaguri, S. Sugano, Y. Suzuki, K. Nakai, DBTSS pro-

vides a tissue specific dynamic view of transcription start sites, Nucleic Acid

Research 38 (2010) D98–104, http://dbtss.hgc.jp/.

[40] P. Ferragina, G. Navarro, Pizza&chili corpus compressed indexes and their

testbeds, http://pizzachili.dcc.uchile.cl/ (Sep. 2005).

[41] T. T. Tran, M. Giraud, J.-S. Varré, Bit-parallel multiple pattern match-

ing, in: Proc. 9th Int’l Conf. Parallel Processing and Applied Mathematics

(PPAM’11), Part II, 2011, pp. 292–301.

38


