
A Parallel Algorithm for Enumerating Joint Weight
of a Binary Linear Code in Network Coding

Shohei Ando, Fumihiko Ino, Toru Fujiwara, and Kenichi Hagihara
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565–0871, Japan

Email: {s-ando, ino, fujiwara, hagihara}@ist.osaka-u.ac.jp

Abstract—In this paper, we present a parallel algorithm for
enumerating joint weight of a binary linear (n, k) code, aiming
at accelerating assessment of its decoding error probability for
network coding. To reduce the number of pairs of codewords to
be investigated, our parallel algorithm reduces dimension k by
focusing on the all-one vector included in many practical codes.
We also employ a population count instruction to compute joint
weight of codewords with a less number of instructions. Our
algorithm is implemented on a multi-core CPU system and an
NVIDIA GPU system using OpenMP and compute unified device
architecture (CUDA), respectively. We apply our implementation
to a subcode of a (127,22) BCH code to evaluate the impact of
acceleration.

I. INTRODUCTION

Network coding [1] is a technique for improving transmis-
sion efficiency of multicast communication. This technique
allows relay nodes to apply coding arithmetic to incoming
messages. Figure 1 shows an example of multicast commu-
nication using network coding over the butterfly network. In
this example, the source node s transmits two messages x and
y to sink nodes r1 and r2. On a typical network in Fig. 1(a),
where relay nodes are prohibited to perform coding arithmetic,
r1 fails to receive y if v2 transmits x rather than y. Similarly,
r2 fails to receive x if v2 transmits y. In contrast, network
coding increases multicast efficiency by allowing relay node
v2 to transmit x⊕y to the next node v4, as shown in Fig. 1(b).
The operator ⊕ here represents bitwise exclusive disjunction.
The sink node r1 then can extract y from its two incoming
messages x and x ⊕ y. Similarly, r2 can receive both x and
y. Li et al. [2] presented that the max-flow bound from the
source node to each sink node can be achieved if relay nodes
use a linear transformation as such coding arithmetic.

In practice, an error-correcting code [3] must be applied
to flowing messages to achieve robust communication against
noise. The performance of an error-correcting code C can be
assessed by performance metrics such as the decoding error
probability and error-correcting capability. An error here oc-
curs if a transmitted message is decoded to a codeword v ∈ C
that differs from the originally sent codeword u ∈ C (u ̸= v).
High-performance error correction can be achieved by not only
maximizing the error-correcting capability but also minimizing
the decoding error probability.

For a typical network, where relay nodes transmit incoming
messages without applying coding arithmetic, weight distribu-

1
v

2
v

3
v

4
v

s

1
r

2
r

x y

x y

x yx

x x

(a)

1
v

2
v

3
v

4
v

s

1
r

2
r

x y

x y

x yyx⊕

yx⊕ yx⊕

(b)

Fig. 1. An example of multicast communication using network coding over
the butterfly network. (a) Node r1 fails to receive y if node v2 transmits x
rather than y. (b) Network coding allows nodes r1 (r2) to receive both x and
y, because y (x) can be extracted from x (y) and x⊕ y.

tion of C is useful to evaluate the decoding error probability.
The weight distribution of C is denoted by an (n + 1)-
tuple (A0, A1, . . . , An), where n is the length of C and
Ai (0 ≤ i ≤ n) is the number of codewords of Hamming
weight i in C [4]. This performance metrics is also useful to
assess the performance of codes for network coding. However,
a single error occurred on a network link can affect decoding
results of multiple messages. For example, the sink node r1 in
Fig. 1(b) can face with two incorrectly transmitted messages x
and x⊕y if an error occurs on the link between s and v1. In this
case, errors in incoming messages are dependent. Therefore,
the decoding error probability for m received codewords
cannot be obtained from weight distribution of C. Instead of
weight distribution, it requires m-joint weight distribution of
C [5]. In this work, we deal with the problem of the butterfly
network, so that we assume that m = 2 hereafter.

To the best of our knowledge, there is no formula that
directly gives joint weight distribution of a code C except
for Hamming code, simplex code, and the first order Reed-
Muller code [3]. Consequently, a joint weight enumerator is
needed to compute a joint weight histogram, which stores
the occurrence of joint weight for all 2-tuples (i.e., pairs)
(u,v) (u,v ∈ C) of codewords in C. A histogram here
is an estimate of the probability distribution of a variable,
and consists of a sequence of bins, which store the frequency
of observations over categories (i.e., intervals of a variable).
Consider a binary linear (n, k) code [6] of length n and
dimension k. The binary linear (n, k) code consists of 2k

codewords. Its joint weight histogram can be computed in
O(22kn) time, because there are 22k pairs of codewords of
length n. This time complexity exponentially increases with
k, so that the joint weight enumeration must be accelerated to
assess codes with large dimension k.

In general, parallel-based solutions using multi-core CPUs
or graphics processing units (GPUs) [7] are attractive methods
for achieving acceleration for compute- and memory-intensive
applications [8], [9], [10], [11]. Ando et al. [12] presented a
parallel algorithm that enumerated joint weight on a multi-core
CPU and a GPU. They exploited data parallelism in enumera-
tion by assigning different pairs of codewords to threads. Their
algorithm employed an efficient mutual exclusion mechanism,
because multiple threads could simultaneously update the
same bin of the histogram. Furthermore, joint weight was
rapidly computed by a population count instruction. However,
this parallel algorithm can be further accelerated by exploiting
theoretical properties on code structure.

In this paper, we propose a parallel algorithm for enumerat-
ing joint weight of a binary linear (n, k) code. We extend the
previous algorithm [12] by taking advantage of code structure
to reduce the number of pairs of codewords to be investigated.
We focus on the fact that many practical codes include the
all-one vectors as a codeword. This assumption reduces the
dimension k of the code for efficient enumeration. Similar
to [12], our algorithm employ a population count instruction
to rapidly compute joint weight of codewords. Our parallel
algorithm currently runs on a multi-core CPU system and a
compute unified device architecture (CUDA) compatible GPU
system [13]. We assume that n ≤ 128 and the target machine
is equipped with an NVIDIA Kepler GPU [14].

The following paper is organized as follows. Section II
introduces some related studies. Section III presents prelim-
inaries on joint weight enumeration of a code. Section IV
describes our parallel algorithm for enumerating joint weight
of a binary linear (n, k) code. Section V presents experimental
results. Finally, Section VI shows conclusion and future work.

II. RELATED WORK

Ando et al. [12] implemented a parallel algorithm that
enumerated joint weight of a binary linear (n, k) code on a
multi-core CPU. Their CPU-based implementation exploited
multiple CPU cores by OpenMP [15], which achieved multi-
threading by simply adding compiler directives to the serial
code. Furthermore, single instruction multiple data (SIMD)
instructions, called Streaming SIMD Extensions (SSE) [16],
were used to maximize the performance per CPU core by
processing a 128-bit vector data simultaneously. They also pre-
sented a GPU-based implementation that processed thousands
of threads simultaneously. Their GPU-based implementation
generated pairs of codewords such that threads could access
different memory addresses simultaneously. In contrast to
the architecture-specific optimization mentioned above, the
present work focuses on code-oriented optimization that ac-
celerate joint weight enumeration on arbitrary architectures.

Some theoretical results are useful to accelerate joint weight
enumeration of a binary linear (n, k) code. The MacWilliams
identity [3] is a famous theorem that relates the weight
enumerator of a binary linear (n, k) code to that of its dual
code, namely a binary linear (n, n − k) code. According to
this theorem, the time complexity of joint weight histogram
computation can be reduced from O(22kn) to O(22(n−k)n)
when k > n − k. Kido et al. [5] applied the MacWilliams
identity to an m-joint weight enumerator from a theoretical
point of view.

With respect to weight distribution, Desaki et al. [17]
presented a weight enumeration algorithm that exploited code
structure called trellis diagram. Although this algorithm cannot
produce joint weight distribution of a code, their idea can be
extended to joint weight enumeration algorithms to reduce the
amount of work.

III. PRELIMINARIES

Let u = (u1u2 · · ·un) ∈ Fn and v = (v1v2 · · · vn) ∈ Fn

be vectors of length n, where F is a binary finite field and
ur, vr ∈ F (1 ≤ r ≤ n). Let fpq(u,v) also be the number
of r such that ur = p and vr = q, where p, q ∈ F. The joint
weight w(u,v) of a pair (u,v) of vectors then is given by a
4-tuple

w(u,v) = (a, b, c, d), (1)

where a = f11(u,v), b = f10(u,v), c = f01(u,v), and d =
f00(u,v). For instance, we obtain (a, b, c, d) = (2, 2, 3, 1) for
u = (11110000) and v = (11001110). Since d = n − a −
b − c [3], we can omit the last element d from joint weight
(a, b, c, d). Hereafter, we denote a joint weight by a 3-tuple
(a, b, c) for simplicity.

Because a, b, and c are numbers enumerated from n
elements, we have

0 ≤ a, b, c ≤ n, (2)
0 ≤ a+ b+ c ≤ n. (3)

Joint weight enumeration outputs a sequence of numbers, each
corresponding to the frequency of a tuple (a, b, c) that satisfies
Eqs. (2) and (3). Considering all combinations with repetitions,
the number of possible tuples is given by

(
n+3
4

)
.

Let C be a binary linear code. Let Ja,b,c be the number
of pairs (u,v) (u ∈ C,v ∈ C) of codewords that have joint
weight (a, b, c). The joint weight distribution of C is then
given by a

(
n+3
4

)
-tuple (J0,0,0, J0,0,1, . . . , Ja,b,c, . . . , Jn,0,0)

such that a, b, and c satisfy Eqs. (2) and (3). This distribution
can be stored in a joint weight histogram with

(
n+3
4

)
bins.

Algorithm 1 shows a brute-force parallel algorithm that gen-
erates joint weight histogram J from the length n and dimen-
sion k of code C, and a sequence W = (w0,w1, . . . ,w2k−1)
of codewords in C. Parallelization can be easily achieved by
assigning different pairs of codewords to threads. However, an
atomic instruction [13] is needed to compute the histogram
correctly, because multiple threads can simultaneously up-
date the same bin at line 7. An alternative approach is to
allow threads to have their own local histogram to prevent

Algorithm 1 Brute-force enumeration (J, n, k,W)

Input: Length n, dimension k, and sequence W =
(w0,w1, . . . ,w2k−1) of codewords

Output: Joint weight histogram J

1: Initialize J ;
2: for i← 0 to 2k − 1 do parallel
3: for j ← 0 to 2k − 1 do parallel
4: a← f11(wi,wj);
5: b← f10(wi,wj);
6: c← f01(wi,wj);
7: Ja,b,c ← Ja,b,c + 1;
8: end for
9: end for

simultaneous access to the same memory address. Although
this approach avoids atomic instructions, a post-processing
stage is needed to merge local histograms into a single global
histogram. More details on this hierarchical organization are
presented in [12].

For a multi-core CPU system, the first loop at line 2 can
be parallelized using multiple threads by adding an OpenMP
directive [15] such as #pragma omp parallel for. On
the other hand, the nested loop structure from lines 2 to 9
can be replaced with a kernel function call for GPU-based
acceleration. The kernel function implements the loop body
from lines 4 to 7 to enumerate joint weight in parallel.

A. Joint weight computation

Joint weight w(u,v) = (a, b, c) of a pair (u,v) of code-
words can be given by

a = popcount(u ∧ v), (4)
b = popcount(u)− a, (5)
c = popcount(v)− a, (6)

where ∧ is bitwise logical conjunction and popcount(u) is a
function that counts the number of bits set to 1 in the given
vector u. Figure 2 shows a naive implementation [18] of the
popcount function. This implementation processes a vector of
l = 32 bits in log l steps, which require 20 instructions con-
taining five additions, five shifts, and ten logical conjunctions.

Instead of this implementation, the previous algorithm [12]
employed a single vector instruction to process a vector of 64
bits. For multi-core CPUs and GPUs, the POPCNT instruction
of SSE 4.2 [16] and the popc instruction of CUDA [13],
respectively, were used to implement the popcount function.
These vector instructions require 64-bit data as their operand,
so that ⌈n/64⌉ instructions are needed to compute joint weight
of a pair of codeword of length n.

B. Reduced enumeration using symmetry

Let w(u,v) = (a, b, c) be the joint weight of pair (u,v) of
codewords. The joint weight of the permutated pair (v,u) then
is given by w(v,u) = (a, c, b) [3]. This symmetric relation

1 int popcount(unsigned int x)
2 {
3 x=(x&0x55555555)+(x>>1&0x55555555);
4 x=(x&0x33333333)+(x>>2&0x33333333);
5 x=(x&0x0f0f0f0f)+(x>>4&0x0f0f0f0f);
6 x=(x&0x00ff00ff)+(x>>8&0x00ff00ff);
7 return (x&0x0000ffff)+(x>>16&0x0000ffff);
8 }

Fig. 2. Basic implementation [18] of the popcount function for 32-bit data.

Algorithm 2 Symmetric enumeration (J, n, k,W)

Input: Length n, dimension k, and sequence W =
(w0,w1, . . . ,w2k−1) of codewords

Output: Joint weight histogram J

1: Initialize J , D, and I;
2: for i← 0 to 2k − 1 do parallel
3: for j ← i to 2k − 1 do parallel
4: a← f11(wi,wj);
5: b← f10(wi,wj);
6: c← f01(wi,wj);
7: if i = j then
8: Da,b,c ← Da,b,c + 1;
9: else

10: Ia,b,c ← Ia,b,c + 1;
11: end if
12: end for
13: end for
14: for a← 0 to n do
15: for b← 0 to n− a do
16: for c← 0 to n− a− b do
17: Ja,b,c ← Ia,b,c + Ia,c,b +Da,b,c;
18: end for
19: end for
20: end for

indicates that joint weight distribution can be obtained from
approximately half of pairs of codewords.

Consider a binary linear (n, k) code C that contains 2k

codewords w0,w1, . . . ,w2k−1. Let Ia,b,c be the number of
pairs of codewords such that (wi,wj) has joint weight of
w(wi,wj) = (a, b, c), where 0 ≤ i < j < 2k. Let Da,b,c also
be the number of pairs of codewords such that (wi,wi) has
joint weight of w(wi,wi) = (a, b, c), where 0 ≤ i < 2k. We
then have the following relation:

Ja,b,c = Ia,b,c + Ia,c,b +Da,b,c. (7)

I and D can be obtained from 2k(2k − 1)/2 and 2k pairs
of codewords, respectively. Therefore, this symmetric relation
reduces the number of pairs of codewords to be investigated
from 22k to 2k(2k + 1)/2 ≈ 22k−1.

Algorithm 2 shows a joint weight enumeration algorithm
that exploits this symmetry. The nested loop from lines 2 to
13 computes a joint weight histogram for approximately half
of pairs of codewords. The entire histogram is then serially

Algorithm 3 Conflict tolerant enumeration (J, n, k,W)

Input: Length n, dimension k, and sequence W =
(w0,w1, . . . ,w2k−1) of codewords

Output: Joint weight histogram J

1: Sort W in ascending order in terms of Hamming weight;
2: W ′ ← ∅;
3: while (W ̸= ∅) do
4: for i← 0 to n do
5: if (∃u ∈W such that popcount(u) = i) then
6: Delete u from W ;
7: Add u to W ′;
8: end if
9: end for

10: end while
11: Call symmetric enumeration (J, n, k,W ′);

computed from lines 14 to 20 using Eq. (7).

C. Conflict tolerant enumeration on GPU

As compared with the CPU, the GPU is a highly-threaded
architecture capable of running thousands of threads simulta-
neously. Therefore, the overhead of atomic instructions can be
a performance bottleneck in GPU-based enumeration. To deal
with this issue, the previous GPU-based implementation [12]
reduced write conflicts by scanning pairs of codewords such
that different threads updated different bins. The symmetry
mentioned in Section III-B was used to realize such conflict
tolerant enumeration.

Suppose that pairs (u, ∗) and (u′, ∗) of codewords are as-
signed to threads #1 and #2, respectively, where ∗ is an arbitral
codeword to be investigated. Suppose that popcount(u) = a+b
and popcount(u′) = a′ + b′. We have a ̸= a′ or b ̸= b′ if
popcount(u) ̸= popcount(u′). In this case, threads #1 and #2
update a different bin, and thus, write conflicts do not occur
between them. Therefore, codewords to be investigated should
be classified into groups in terms of popcount value (i.e.,
Hamming weight). Threads #1 and #2 then are responsible for
pairs (u, ∗) and (u′, ∗) of codewords such that popcount(u) ̸=
popcount(u′).

A preprocessing stage is required to realize this assignment.
That is, codewords should be sorted in ascending order in
terms of Hamming weight. This preprocessing stage can
be processed in O(2kn) time, which is much smaller than
O(22kn), or the time complexity of joint weight distribution
computation. Consequently, this sorting operation is processed
on a CPU. After this preprocessing stage, joint weight distri-
bution is computed using Algorithm 2.

Algorithm 3 shows a pseudocode of the previous algorithm
for GPU-based enumeration [12]. The preprocessing stage
from lines 1 to 10 produces a sequence W ′ of sorted code-
words, which is then given as an input to Algorithm 2.

IV. PROPOSED JOINT WEIGHT ENUMERATION

Our parallel joint weight enumeration algorithm consists of
four acceleration techniques: (1) dimension reduction using the

all-one vector, (2) joint weight computation with a population
count instruction (Section III-A), (3) reduced enumeration
using symmetry (Section III-B), and (4) conflict tolerant
enumeration on the GPU (Section III-C).

A. Dimension reduction using all-one vector

Many practical codes such as Bose-Chaudhuri-
Hocquenghem (BCH) codes [19], [20], Hamming codes,
and Reed-Muller codes include the all-one vector 1 as a
codeword. Given such code C, we have

u+ 1 = u ∈ C, for all u ∈ C. (8)

This implies that dimension k can be reduced for enumerating
joint weight efficiently. That is, w(u+1,v), w(u,v+1), and
w(u + 1,v + 1) can be obtained from w(u,v) = (a, b, c, d)
as follows:

w(u+ 1,v) = (c, d, a, b), (9)
w(u,v + 1) = (b, a, d, c), (10)

w(u+ 1,v + 1) = (d, c, b, a). (11)

In other words, given codewords u and v, there is no need to
generate codewords u + 1 and v + 1 to compute their joint
weight. Therefore, the number of pairs of codewords can be
reduced to quarter.

B. Codeword generation with dimension reduction

Before using the dimension reduction technique mentioned
above, we have to confirm whether the target code C includes
the all-one vector 1 or not. A straightforward scheme to
perform this confirmation is to use a parity-check matrix H of
C: a vector x is a codeword of C if H ·xT = 0, where xT is the
transpose of x. Otherwise, the dimension reduction technique
cannot be used for enumeration. Although this scheme detects
the all-one vector in C, it is not clear which codeword must
be generated for enumeration.

Our alternative scheme is as follows. Let G be the canonical
generator matrix [3] of a binary linear (n, k) code C. G can
be represented as G = [Ik|P], where Ik is the k×k identity
matrix and P is a k × (n− k) matrix.

1) Replace the bottom row Gk of G with summation of
rows,

∑
1≤i≤k Gi, where Gi represents the i-th row of

G.
2) Check the bottom row Gk to detect the all-one vector.

a) If Gk = 1T, code C includes the all-one vec-
tor 1. We then eliminate Gk from G, because
codewords u + 1 and v + 1 are not needed to
compute their joint weight, as mentioned in Section
IV-A. This elimination reduces the dimension of
C, because the generator matrix is then given by
G = [Ik−1|P ′], where P ′ is a (k − 1)× (n− k)
matrix.

b) Otherwise, code C does not include the all-one
vector 1.

3) Use G to generate the codewords of C.

TABLE I
SPECIFICATION OF EXPERIMENTAL MACHINES.

Item Machine #1 Machine #2
of CPU sockets 1 2
CPU Core i7 3770K Xeon E5-2680v2
of cores per socket 4 10
Frequency 3.5 GHz 2.8 GHz
Main memory capacity 16 GB 512 GB
Peak memory bandwidth 25.6 GB/s 51.2 GB/s
GPU GTX 680 Tesla K40
of cores 1536 2880
Core clock 1006 MHz 745 MHz
VRAM capacity 2 GB 12 GB
Peak memory bandwidth 192 GB/s 288 GB/s
PCI Express bus 3.0 ×16 3.0 ×16
OS Ubuntu 12.04 64-bit Ubuntu 13.10 64-bit
C++ compiler GCC 4.6.3 GCC 4.8.1
Graphics driver 331.62
CUDA 6.0
Compile option -arch sm_30 -O3 -arch sm_35 -O3

Similar to the sorting operation presented in Section III-C,
we decided to serially process this preprocessing stage on a
CPU.

V. EXPERIMENTAL RESULTS

To evaluate the performance of our parallel algorithm, we
compared our implementation with the previous implemen-
tation [12] in terms of execution time. Table I shows the
specification of our experimental machines. Our machines
had a 4-core Core i7 CPU and two 10-core Xeon E5 CPUs,
respectively. In addition, these machines were equipped with a
GTX 680 GPU and a Tesla K40 GPU, respectively. Both GPUs
were based on the Kepler architecture [14]. The error check
and correct (ECC) capability of the K40 card was turned off
during measurement. The algorithms were implementated us-
ing OpenMP to realize multithreaded enumeration. We created
two threads per CPU core to take advantage of hyperthreading
technology.

We used a subcode of the (127,22) binary BCH code [19],
[20] of dimension t (≤ k), where 11 ≤ t ≤ 22. Consequently,
a joint weight histogram was computed for 2t codewords. The
bin size of the global joint weight histogram was set to 8 bytes,
because the maximum value of a bin could reach 22t, where
11 ≤ t ≤ 22. On the other hand, the bin size of local joint
histograms was set to 2 bytes and 4 bytes for the CPU- and
GPU-based implementations, respectively [12].

A. Performance Comparison

Figure 3 shows the execution times for n = 127 and t = 22.
The execution times of GPU-based implementations include
the transfer time needed to copy data between the CPU and
GPU. On all CPUs and GPUs, our algorithm reduced the
execution time to quarter. These timing results are the same as
what expected in Section IV-A. The highest performance was
obtained on the Xeon processors, which reduced the execution
time from 1,111 to 275 seconds. The speedup over the previous
algorithm reached a factor of 4.03, which was slightly higher
than a factor of 4.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Core i7 Xeon E5 GTX 680 K40

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Previous

This work

Fig. 3. Execution times of the proposed algorithm and the previous algorithm
[12].

Because the K40 card had a higher memory bandwidth than
the GTX 680 card, we expected that the former would outper-
form the latter for this memory-intensive application. However,
we found that the GTX 680 card was 1.36 times faster than
the K40 card for this application. Because this speedup ratio is
close to the clock speed ratio (1006/745 = 1.35), we think that
this performance behavior is due to atomic instructions. The
throughput of atomic instructions on the Kepler architecture
varies according to the memory address to be accessed. For
example, the worst throughput of 1 instruction per clock is
obtained when threads access the same address simultaneously
[21]. In contrast, this throughput increases to 8 instructions
per streaming multiprocessor [13] per clock when threads in
the same warp access different addresses in the same cache
line. Consequently, the worst throughput rather than the best
throughput determines the performance of our GPU-based
implementation, though write conflicts are reduced by sorting
codewords.

Our algorithm requires a preprocessing stage on the CPU.
Both the CPU- and GPU-based implementations generate
codewords before computing the joint weight histogram. The
GPU-based implementation then sorts codewords and transfers
them to the GPU. We found that the preprocessing overhead
was negligible against the entire execution time. For example,
when t = 22, the preprocessing time and the transfer time
were approximately 0.009% and 0.002% of the execution
time on the GTX 680 card, respectively. The performance
of our algorithm is dominated by joint weight distribution
computation.

B. Efficiency Analysis

We next analyzed the efficiency of the implementations in
terms of memory throughput, because access to histogram
bins determined their performance. The effective memory
throughput is given by B = AM/T , where A, M , and T
are the number of pairs of codewords, the amount of memory
reads/writes per pair, and the execution time, respectively. Note
that the execution time T here includes the preprocessing
time and the transfer time mentioned above. For each pair of
codewords of length n, our implementation updates an 8-byte
bin. Therefore, we have M = 2 ⌈n/8⌉+8 in byte. Considering

0

50

100

150

200

250

300

350

11 12 13 14 15 16 17 18 19 20 21 22

M
em

o
ry

 t
h

ro
u

g
h
p
u

t
(G

B
/s

)

Dimension t

Core i7

Xeon E5

GTX 680

K40

Fig. 4. Effective memory throughputs measured during parallel joint weight
enumeration.

combinations of two codewords to be selected from the total
2k codewords, we have A =

(
2k

2

)
.

Figure 4 shows the effective memory throughputs of the im-
plementations. When t = 22, The effective memory through-
puts of the GTX 680 and K40 reached 191 GB/s and 141
GB/s, respectively. These results were equivalent to 99.6%
and 49.0% of the peak memory bandwidth, respectively. The
former is close to 100%, demonstrating the effectiveness of
hierarchical histogram organization mentioned in Section III.
That is, local histograms are small enough to fit into the
GPU cache called shared memory [13]. Therefore, the memory
bandwidth was efficiently saved using the shared memory,
increasing the effective memory throughput close to the peak
memory bandwidth.

With respect to CPU-based results, we found that the effec-
tive memory throughputs were higher than the peak memory
bandwidth. Similar to GPU-based results, this behavior can
be explained by cache hits. Actually, a local joint weight
histogram for n ≤ 128 can be stored in a memory region
of approximately 17 KB [12], which is smaller than the
capacity of L1 cache (32 KB). Consequently, the instruction
issue rate determines the performance of our CPU-based
implementation. According to this analysis, the two Xeon
processors are 4 times faster than the single Core processor,
because the formers have five times more physical cores but
with 20% slower clock rate than the latter. Actually, the Xeon
processors achieved approximately 4.3 times higher memory
throughput than the Core processor when t = 22.

When t ≤ 16, the Xeon processors failed to outperform the
Core processor. This is due to the memory allocation overhead.
For example, memory allocation on this big memory machine
took 0.4 seconds, whereas the execution time at t = 16 was
0.76 seconds.

Finally, Fig. 5 shows the speedup over a single-core version
on the Core and Xeon processors, which have 4 and 20
physical cores, respectively. The performance of our imple-
mentation linearly increased with the number of threads.
This performance behavior also explains why the memory
throughputs are higher than the peak memory bandwidth.
Because local histograms were entirely stored in the L1 cache,
the performance was mainly dominated by the instruction issue

0

4

8

12

16

20

1 4 8 12 16 20 24 28 32 36 40

S
p

ee
d

u
p

of threads

Core i7 Xeon E5 Linear

Fig. 5. Speedups over a single-core version on Core and Xeon processors.

rate. Therefore, the performance increased with the number of
physical cores to be exploited for enumeration. Owing to the
hyperthreading technology, the performance slightly increased
after assigning the second threads to CPU cores.

VI. CONCLUSION

In this paper, we presented a parallel algorithm for enumer-
ating joint weight of a binary linear (n, k) code. Our algorithm
reduces the number of pairs of codewords to be investigated.
To realize this, we reduce the dimension k of the code by fo-
cusing on the all-one vector, which is included in typical error-
correcting codes. Our algorithm also employ a population
count instruction to reduce the number of instructions needed
to compute joint weight. We also sort codewords in terms of
Hamming weight to realize conflict tolerant enumeration.

Our experimental results showed that the dimension reduc-
tion reduced the execution time to quarter on multi-core CPUs
and a GPU. We also found that the performance of our GPU-
based implementation was dominated by the core clock speed
of the GPU. Similarly, our CPU-based implementation had a
performance bottleneck in the instruction issue rate.

Future work includes further exploitation of code structure
such as trellis diagram [17]. The MacWilliams identity is also
useful to accelerate enumeration for codes of large dimension.

ACKNOWLEDGMENT

This study was supported in part by the Japan Society
for the Promotion of Science KAKENHI Grant Number
24560458 and the Japan Science and Technology Agency
CREST program, “An Evolutionary Approach to Construc-
tion of a Software Development Environment for Massively-
Parallel Computing Systems.”

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204–
1216, Jul. 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Information Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[3] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. North-Holland, 1977.

[4] M. Mohri, Y. Honda, and M. Morii, “A method for computing the local
distance profile of binary cyclic codes,” IEICE Trans. Fundamentals
(Japanese Edition), vol. J86-A, no. 1, pp. 60–74, Jan. 2003.

[5] Y. Kido and T. Fujiwara, “MacWilliams identity for joint weight
enumerator to evaluate decoding error probability of linear block code
in network coding,” in Proc. 34th Symp. Information Theory and its
Applications (SITA’11), 3.4.1, Nov. 2011, pp. 184–189, (In Japanese).

[6] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications, 2nd ed. Prentice Hall, 2004.

[7] D. Luebke and G. Humphreys, “How GPUs work,” Computer, vol. 40,
no. 2, pp. 96–100, Feb. 2007.

[8] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with CUDA,” IEEE Micro, vol. 28, no. 4, pp. 13–27, Jul.
2008.

[9] K. Ikeda, F. Ino, and K. Hagihara, “Efficient acceleration of mutual
information computation for nonrigid registration using CUDA,” IEEE
J. Biomedical and Health Informatics, vol. 18, no. 3, pp. 956–968, May
2014.

[10] F. Ino, Y. Munekawa, and K. Hagihara, “Sequence homology search
using fine grained cycle sharing of idle GPUs,” IEEE Trans. Parallel
and Distributed Systems, vol. 23, no. 4, pp. 751–759, Apr. 2012.

[11] Y. Okitsu, F. Ino, and K. Hagihara, “High-performance cone beam
reconstruction using CUDA compatible GPUs,” Parallel Computing,
vol. 36, no. 2/3, pp. 129–141, Feb. 2010.

[12] S. Ando, F. Ino, T. Fujiwara, and K. Hagihara, “A parallel method
for accelerating joint weight distribution computation,” IEICE Trans.
Information and Systems (Japanese Edition), vol. J97-D, no. 9, pp. xx–
xx, Sep. 2014, (In Japanese).

[13] NVIDIA Corporation, “CUDA C Programming Guide Version 6.0,” Feb.
2014, http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.
pdf.

[14] ——, “NVIDIA’s Next Generation CUDA Compute Architecture: Ke-
pler GK110,” May 2012, http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[15] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Mateo, CA: Morgan
Kaufmann, Oct. 2000.

[16] Intel Corporation, “Intel SSE4 Programming Reference,” Jul. 2007, http:
//software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf.

[17] Y. Desaki, T. Fujiwara, and T. Kasami, “A method for computing the
weight distribution of a block code by using its trellis diagram,” IEICE
Trans. Fundamentals, vol. E77-A, no. 8, pp. 1230–1237, Aug. 1994.

[18] H. S. Warren, Hacker’s Delight, 2nd ed. Addision-Wesley Professional,
2012.

[19] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and Control, vol. 3, no. 1, pp. 68–79,
Mar. 1960.

[20] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 29, no. 2,
pp. 147–156, Apr. 1959, (In French).

[21] L. Nyland and S. Johns, “Understanding and using atomic
memory operations,” in 4th GPU Technology Conf. (GTC’13),
Mar. 2013, http://on-demand.gputechconf.com/gtc/2013/presentations/
S3101-Atomic-Memory-Operations.pdf.

