
The Past, Present, and Future of GPU-Accelerated Grid Computing

Fumihiko Ino
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Email: ino@ist.osaka-u.ac.jp

Abstract—The emergence of compute unified device archi-
tecture (CUDA), which relieved application developers from
understanding complex graphics pipelines, made the graphics
processing unit (GPU) useful not only for graphics applications
but also for general applications. In this paper, we introduce a
cycle sharing system named GPU grid, which exploits idle GPU
cycles for acceleration of scientific applications. Our cycle shar-
ing system implements a cooperative multitasking technique,
which is useful to execute a guest application remotely on a
donated host machine without causing a significant slowdown
on the host machine. Because our system has been developed
since the pre-CUDA era, we also present how the evolution of
GPU architectures influenced our system.

Keywords-GPGPU; cooperative multitasking; cycle sharing;
grid computing; volunteer computing;

I. INTRODUCTION

The graphics processing unit (GPU) [1]–[3] is a hardware
component mainly designed for acceleration of graphics
tasks such as real-time rendering of three-dimensional (3D)
scenes. To satisfy the demand for real-time rendering of
complex scenes, the GPU has higher arithmetic performance
and memory bandwidth than the CPU. The emergence of
compute unified device architecture (CUDA) [4] allows
application developers to easily utilize the GPU as an ac-
celerator for not only graphics applications but also general
applications. Using the CUDA, an application hotspot can
be eliminated by implementing the corresponding code as
a kernel function, which runs on a GPU in parallel. As a
result, many research studies use the GPU as an accelerator
for compute- and memory-intensive applications [5]–[8].

As such a study, the Folding@home project [9], [10]
employed 20,000 idle GPUs to accelerate protein folding
simulations on a grid computing system. Although there are
many types of grid systems, a grid system in this paper is a
volunteer computing system that shares network-connected
computational resources to accelerate scientific applications.
We denote a host as a user who donates a computational
resource and a guest as a user who uses the donated resource
for acceleration (Fig. 1). A host task corresponds to a local
task generated by daily operations on a resource, and a guest
task corresponds to a grid task to be accelerated remotely
on the donated resource.

Host and guest tasks can be executed simultaneously on
a donated resource because the resource is shared between

Server

Code

development

Text

editing

Resource

Monitoring

Fine-grained cycle sharing

Dedicated execution

Job

submission

Task

assignment

F

Host
(resource owner)

Guest
(grid user)

Guest

application

Host

application

Figure 1. Overview of GPU grid.

hosts and guests. However, current GPU architectures do not
support preemptive multitasking, so that a guest task can
intensively occupy the resource until its completion. Thus,
simultaneous execution of multiple GPU programs signifi-
cantly drops the frame rate of the host machine. To make
the matter worse, this performance degradation increases
with kernel execution time. For example, our preliminary
results [11] show that a guest task running on a donated
machine causes the machine to hang and reduces its frame
rate to less than 1 frame per second (fps). Accordingly, GPU-
accelerated grid systems have to not only minimize host
perturbation (i.e., frame rate degradation) but also maximize
guest application performance.

In this paper, we introduce a GPU-accelerated grid system
capable of exploiting short idle time such as hundreds of
milliseconds. Our cycle sharing system extends a coopera-
tive multitasking technique [12], which is useful to execute
a guest application remotely on a donated host machine
without causing a significant slowdown on the machine.
We also present how the evolution of GPU architectures
influenced our system.

II. PAST: PRE-CUDA ERA

Before the release of CUDA, the only way to implement
GPU applications was to use a graphics API such as DirectX
[13] or OpenGL [14]. Despite this low programmability,
some grid systems tried to accelerate their computation
using the GPU. The Folding@home and GPUGRID.net
systems [9], [15] are based on Berkeley Open Infrastructure
for Network Computing (BOINC) [16], which employs a
screensaver to avoid simultaneous execution of multiple
GPU programs on a host machine. These systems detect an



idle machine according to screensaver activation. A running
guest task can be suspended (1) if the screensaver turns off
due to host’s activity or (2) if the host machine executes
DirectX-based software with exclusive mode. The exclusive
mode here is useful to avoid a significant slowdown on
the host machine if both guest and host applications are
implemented using DirectX.

Kotani et al. [11] also presented a screensaver-based
system that monitors video memory usage in addition to
host’s activity. By monitoring video memory usage, the
system can avoid simultaneous execution of host and guest
applications though the host applications are not executed
with exclusive mode. Screensaver-based systems are useful
to detect long idle periods spanning over a few minutes.
However, short idle periods such as a few seconds cannot
be detected due to the limitation of timeout length. Their
system was applied to a biological application to evaluate the
impact of utilizing idle GPUs in a laboratory environment
[17].

Caravela [18] is a stream-based distributed computing
environment that encapsulates a program to be executed in
local or remote resources. This environment focuses on the
encapsulation and assumes that resources are dedicated to
guests. The perturbation issue, which must be solved for
non-dedicated systems, is not addressed.

III. PRESENT: CUDA ERA

To detect short idle time spanning over a few seconds,
Ino et al. [19] presented an event-based system that mon-
itors mouse and keyboard activities, video memory usage,
and CPU usage. Similar to screensaver-based systems, they
assume that idle resources do not have mouse and keyboard
events for one second. Furthermore, they divide guest tasks
into small pieces to minimize host perturbation by complet-
ing each piece within 100 milliseconds. Owing to this task
division, their system realizes the minimum frame rate of
around 10 fps.

One drawback of this previous system is that the GPU is
not always busy when the mouse or keyboard is operated in-
teractively by the host. To make the matter worse, mouse and
keyboard events are usually recorded at short intervals such
as a few seconds. Consequently, resources can frequently
alternate between idle and busy states. This alternation can
make guest tasks be frequently cancelled immediately after
their assignment, because idle host machines turn to be busy
before task completion. Furthermore, the job management
server can suffer from frequent communication, because a
state transition on a resource causes an interaction between
the resource and the server.

Some research projects developed GPU virtualization
technologies to realize GPU resource sharing. To the best of
our knowledge, NVIDIA GRID and Gdev [20] are the only
systems that virtualize a physical GPU into multiple logical
GPUs and achieve a prioritization, isolation, and fairness

scheme. Gdev currently supports Linux systems. Although
virtualization technologies are useful to deal with the host
perturbation issue, they require system modifications on host
machines. We think that the host perturbation issue should
be solved at the application layer to minimize modifications
at the system level.

rCUDA [21] is a programming framework that enables
remote execution of CUDA programs with small overhead.
A runtime system and a CUDA-to-rCUDA transformation
framework are provided to intercept CUDA function calls
and redirect these calls to remote GPUs. Because rCUDA
focuses on dedicated clusters rather than shared grids, the
host perturbation issue is not solved. A similar virtualization
technology was implemented as a grid-enabled programming
toolkit called GridCuda [22].

vCUDA [23] allows CUDA applications executing within
virtual machines to leverage hardware acceleration. Similar
to rCUDA, it implements interception and redirection of
CUDA function calls so that CUDA applications in virtual
machines can access a graphics device of the host operating
system. The host perturbation issue is not tackled.

IV. OUR CYCLE SHARING SYSTEM

Our cycle sharing system is capable of exploiting short
idle time such as hundreds of milliseconds without dropping
the frame rate of donated resources. To realize this, we exe-
cute guest tasks using a cooperative multitasking technique
[12]. Our system extends this technique to avoid mouse and
keyboard monitoring. Similar to [19], our system divides
guest tasks into small pieces to complete each piece within
tens of milliseconds. Our extension can be summarized in
two-fold: (1) a relaxed definition of an idle state and (2) two
execution modes, each for partially and fully idle resources
(Fig. 2).

The relaxed definition relies only on CPU and video
memory usages. Consequently, there is no need to monitor
mouse and keyboard activities. A resource is assumed to
be busy if both CPU and video memory usages exceed
30% and 1 MB, respectively (Fig. 3). For idle resources,
our system locally selects the appropriate execution mode
for guest tasks. Consequently, most state transition can be
processed locally, avoiding frequent communication between
resources and the resource management server.

The two execution modes are as follows:
1) A periodical execution mode for partially idle re-

sources. For partially idle resources, our system uses
the periodical mode with tiny pieces of guest tasks.
Each piece here can be processed within a few ten
milliseconds, and a series of pieces are processed at
regular intervals 1/F to keep the frame rate around
F fps. In other words, F is the minimum frame rate
desired by the host.

2) A continuous execution mode for fully idle resources.
For fully idle resources, on the other hand, our system



Time

Waiting time 1/F

Host task Guest task

(a)

Time

Host task Guest task

(b)

Figure 2. Our cooperative multitasking technique. (a) Periodical execution
mode executes guest tasks at regular intervals 1/F , where F is the
minimum desired frame rate. (b) Continuous execution mode intensively
executes guest tasks.

Idle Busy

Continuous

exec. mode

Task

completion

Task

assignment

Periodical

exec. mode

Guest task execution

)MB130%) OR (Video memory usage >>= (CPU usageF

F

 for 1 second )(NOT F

F

occurs α<k

α>k

 times successively 3

Figure 3. State transition diagram for cooperative multitasking.

switches its execution mode to the continuous mode
with small pieces of guest tasks. A series of pieces is
continuously processed on the GPU. The continuous
execution mode allows guests to execute their tasks on
lightly-loaded resources that are interactively operated
by hosts.

In order to determine whether a resource is partially idle
or fully idle, our system estimates GPU workload with
keeping the frame rate as possible as we can. To realize such
a low-overhead estimation, our system executes a null kernel
before guest task execution and measures its execution time
k. A null kernel is a device function that immediately
returns after its function call. The measured time k is then
compared to the pre-measured time α obtained by dedicated
execution on the same resource. We assume that the resource
is partially idle if k ≥ α and is fully idle if k < α occurs
successively three times.

False positive and false negative cases can occur when

Table I
SPECIFICATION OF EXPERIMENTAL MACHINES.

Item Specification

OS Windows 7 Professional 64 bit

CPU Intel Core i7-3770K (3.5 GHz)

Main memory 16 GB

GPU NVIDIA GTX 680

CUDA 5.0

Video driver 310.90

Table II
SYSTEM UPTIME IN HOUR.

Host machine #1 #2 #3 #4

Uptime 135.1 15.9 197.0 81.6

switching to the continuous execution mode. The former
leads to excessive execution of guest tasks, failing to keep
the original frame rate obtained withoug guest task execu-
tion. On the other hand, the latter fails to maximize guest
task throughput, but the frame rate can be kept. We think
that the latter issue is not critical for our system, because our
first priority is minimization of host perturbation. In contrast,
we prevent the former case by confirming k < α three
times, which avoids immediate transition to the continuous
execution mode.

V. EXPERIMENTAL RESULTS

We conducted experiments to evaluate our system in terms
of guest throughput. Table I shows the specification of
our experimental machines. Four machines were used by
graduate students and were monitored for a month. The
students mainly used their machines to write CPU/GPU
programs, edit documents, and browse websites. Table II
shows total system uptimes observed on the machines.

To compare our system with a previous system [19] in
a fair manner, we simulated the behavior of the previous
system by using logs obtained on the experimental machines.
The logs contained a time series of CPU and video memory
usages and mouse and keyboard events.

We did not use a resource management server, so that the
host machines immediately executed a guest task when they
turned to be idle. Similarly, guest tasks were iteratively exe-
cuted without communicating with a resource management
server. A guest task here contained 50 multiplications of
3072 × 3072 matrices. A cooperative multitasking version
of matrix multiplication was developed by modifying the
CUDA software development kit (SDK) sample code.

Figure 4 shows the measured throughputs of guest task ex-
ecution. As compared with the previous system, our system
achieved a 91% higher throughput on host machine #4. This
increase can be explained by the increase of detected idle



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

#1 #2 #3 #4

G
u
es

t 
th

ro
u
g
h
p
u
t 

(t
as

k
s/

s)

Host machine

Previous Proposed

Figure 4. Measured throughput of guest tasks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

#1 #2 #3 #4

D
et

ec
te

d
 i

d
le

 t
im

e 
ra

te

Host machine

Previous Proposed

Figure 5. Detected idle time rate over system uptime.

time length. As shown in Fig. 5, our system detected longer
idle time than the previous system, which depends on mouse
and keyboard monitoring. This monitoring process prevents
short idle periods to be exploited for guest task execution. In
contrast, our system eliminates such a monitoring process,
according to the relaxed definition of the idle state.

As compared with dedicated execution, multitasking exe-
cution cannot achieve a high efficiency for guest tasks. This
might decrease the guest throughput, but our system covers
this drawback by increasing the detected idle time. Actually,
Fig. 5 shows that our system detected 4%–67% longer idle
time than the previous system, which cannot detect short
idle time such as hundreds of milliseconds.

In Fig. 5, our detected idle time occupies 99% of system
uptime. This indicates that hosts usually use their resources
for interactive applications, which do not intensively use
GPU resources. Such interactive cases include document
editing and web browsing. These cases cause mouse and
keyboard events, so that interactively operated resources are
considered as busy in previous systems. In contrast, our
system regards them as partially idle resources, owing to
the relaxed definition of the idle state.

0

0.5

1

1.5

2

2.5

3

3.5

4

#1 #2 #3 #4

T
ra

n
si

ti
o
n
 t

h
ro

u
g
h
p
u
t 

(t
ra

n
si

ti
o
n
s/

s)

Host machine

Previous Proposed

Figure 6. Number of state transitions per minute.

Finally, we measured the number of state transitions on
host machines. Figure 6 shows the measured number per
minute. Owing to the relaxed definition, our system achieved
fewer transitions than the previous system. The numbers
were reduced by 40%–96%, so that our system will allow the
resource management server to register more host machines
than the previous system.

VI. CONCLUSION AND FUTURE

We have introduced a GPU-accelerated grid system ca-
pable of utilizing short idle time spanning over hundreds
of milliseconds. Our cooperative multitasking technique
realizes concurrent execution of host and guest applications,
minimizing host perturbation. Our technique eliminates the
mouse and keyboard monitoring process required in previous
systems. Our monitoring process checks only CPU and video
memory usages, according to a relaxed definition of an idle
resource. This relaxation reduces not only the number of
state transitions but also that of communication messages
between resources and the resource management server.

We performed case study in which our system is applied
to four desktop machines of our laboratory. Compared to
a previous screensaver-based system, our cooperative sys-
tem detected 1.7 times longer idle time. Consequently, our
system achieved a 91% higher guest throughput, realizing
efficient utilization of idle resources. Furthermore, our sys-
tem reduced the server workload by reducing the number of
state transitions by 96%.

Future work includes detailed evaluation using more
practical applications in a large-scale environment. We plan
to apply our system to a homology search problem [8].
NVIDIA has announced that their next-generation GPU
architectures, Maxwell and Volta, will support preemption
and unified virtual memory. Such preemptive architectures
will require a task scheduler to find the best tradeoff point
between the frame rate of host machines and the throughput
of guest tasks.



ACKNOWLEDGMENT

This study was supported in part by the Japan Society
for the Promotion of Science KAKENHI Grant Numbers
23700057 and 23300007 and the Japan Science and Technol-
ogy Agency CREST program, “An Evolutionary Approach
to Construction of a Software Development Environment for
Massively-Parallel Computing Systems.”

REFERENCES

[1] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, Mar. 2008.

[2] NVIDIA Corporation, “NVIDIA’s Next Generation
CUDA Compute Architecture: Fermi,” Nov. 2009,
http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[3] ——, “NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110,” May
2012, http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[4] ——, “CUDA C Programming Guide Version 5.5,” Jul. 2013,
http://docs.nvidia.com/cuda/pdf/CUDA C Programming
Guide.pdf.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell, “A survey of
general-purpose computation on graphics hardware,” Com-
puter Graphics Forum, vol. 26, no. 1, pp. 80–113, Mar. 2007.

[6] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov,
“Parallel computing experiences with CUDA,” IEEE Micro,
vol. 28, no. 4, pp. 13–27, Jul. 2008.

[7] Y. Okitsu, F. Ino, and K. Hagihara, “High-performance cone
beam reconstruction using CUDA compatible GPUs,” Parallel
Computing, vol. 36, no. 2/3, pp. 129–141, Feb. 2010.

[8] Y. Munekawa, F. Ino, and K. Hagihara, “Accelerating Smith-
Waterman algorithm for biological database search on CUDA-
compatible GPUs,” IEICE Trans. Information and Systems,
vol. E93-D, no. 6, pp. 1479–1488, Jun. 2010.

[9] The Folding@Home Project, “Folding@home distributed
computing,” 2010, http://folding.stanford.edu/.

[10] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and
V. S. Pande, “Folding@home: Lessons from eight years of
volunteer distributed computing,” in Proc. 26th IEEE Int’l
Parallel and Distributed Processing Symp. (IPDPS’09), Apr.
2009, 8 pages (CD-ROM).

[11] Y. Kotani, F. Ino, and K. Hagihara, “A resource selection
system for cycle stealing in GPU grids,” J. Grid Computing,
vol. 6, no. 4, pp. 399–416, Dec. 2008.

[12] F. Ino, A. Ogita, K. Oita, and K. Hagihara, “Cooperative
multitasking for GPU-accelerated grid systems,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 1, pp.
96–107, Jan. 2012.

[13] D. Blythe, “The Direct3D 10 system,” ACM Trans. Graphics,
vol. 25, no. 3, pp. 724–734, Jul. 2006.

[14] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL
Programming Guide, 5th ed. Reading, MA: Addison-Wesley,
Aug. 2005.

[15] GPUGRID.net, 2010, http://www.gpugrid.net/.

[16] D. P. Anderson, “BOINC: A system for public-resource com-
puting and storage,” in Proc. 5th IEEE/ACM Int’l Workshop
Grid Computing (GRID’04), Nov. 2004, pp. 4–10.

[17] F. Ino, Y. Kotani, Y. Munekawa, and K. Hagihara, “Harness-
ing the power of idle GPUs for acceleration of biological
sequence alignment,” Parallel Processing Letters, vol. 19,
no. 4, pp. 513–533, Dec. 2009.

[18] S. Yamagiwa and L. Sousa, “Caravela: A novel stream-based
distributed computing,” IEEE Computer, vol. 40, no. 5, pp.
70–77, May 2007.

[19] F. Ino, Y. Munekawa, and K. Hagihara, “Sequence homology
search using fine grained cycle sharing of idle GPUs,” IEEE
Trans. Parallel and Distributed Systems, vol. 23, no. 4, pp.
751–759, Apr. 2012.

[20] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev:
First-class GPU resource management in the operating sys-
tem,” in Proc. 2012 USENIX Ann. Technical Conf. (ATC’12),
Jun. 2012, 12 pages (CD-ROM).

[21] C. Reaño, A. J. Peña, F. Silla, J. Duato, R. Mayo, and
E. S. Quintana-Ortı́, “CU2rCU: towards the complete rCUDA
remote GPU virtualization and sharing solution,” in Proc.
19th Int’l Conf. High Performance Computing (HiPC’12),
Dec. 2012, 10 pages (CD-ROM).

[22] T.-Y. Liang, Y.-W. Chang, and H.-F. Li, “A CUDA program-
ming toolkit on grids,” Int’l J. Grid and Utility Computing,
vol. 3, no. 2/3, pp. 97–111, May 2012.

[23] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU-accelerated high-
performance computing in virtual machines,” IEEE Trans.
Computers, vol. 61, no. 6, pp. 804–816, Jun. 2012.


