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Abstract: This paper proposes an acceleration method for finding the all-pairs short-
est paths (APSPs) using the graphics processing unit (GPU). Our method is based on
Harish’s iterative algorithm that computes the cost of the single-source shortest path
(SSSP) in parallel on the GPU. In addition to this fine-grained parallelism, we exploit
the coarse-grained parallelism by using a task parallelization scheme that associates a
task with an SSSP problem. This scheme solves multiple SSSP problems at a time,
allowing us to efficiently access graph data by sharing the data between processing
elements in the GPU. Furthermore, our fine- and coarse-grained parallelization leads
to a higher parallelism, increasing the efficiency with highly threaded code. As a result,
the speedup over the previous SSSP-based implementation ranges from a factor of 2.8
to that of 13, depending on the graph topology. We also show that the overhead of
path recording needed after cost computation increases the execution time by 7.7%.
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1 Introduction

The all-pairs shortest path (APSP) problem is to find
shortest paths between all two vertices in a graph. This
operation is one of the basic graph algorithms, which has
many applications in a wide variety of fields, such as com-
puter aided design (Shenoy, 1997), intelligent transporta-
tion systems (Kim and Lee, 1999), data mining (Jayade-
vaprakash et al., 2005) and bioinformatics (Nakaya et al.,
2001).

However, the APSP problem requires a large amount
of computation. For instance, the Floyd-Warshall (FW)
(Floyd, 1962; Warshall, 1962) algorithm solves this prob-
lem in O(|V |3) time, where |V | represents the number of
vertices in a graph. A straightforward method for solv-
ing the APSP problem is to iteratively compute single-
source shortest path (SSSP) for every source vertex. Di-
jkstra’s algorithm (Dijkstra, 1959) accelerated with a Fi-
bonacci heap is known as a fast method to find an SSSP
for a sparse graph. Using this algorithm, we can find
APSPs in O(|V ||E| + |V |2 log |V |) time, where |E| repre-
sents the number of edges in a graph. In contrast to al-
gorithmic studies mentioned above, many researchers are
trying to accelerate the algorithms using various acceler-
ators, such as graphics processing units (GPUs) (Harish
and Narayanan, 2007; Katz and Kider, 2008; Micikevicius,
2004), field-programmable gate arrays (FPGAs) (Bond-
hugula et al., 2006), and clusters (Srinivasan et al., 2006).

To the best of our knowledge, Harish and Narayanan
(2007) present the fastest method for large graphs. Their
method computes the costs of APSPs instead of the paths.
The cost of a path here is given by the sum of the weights
of edges composing the path. They accelerate the FW al-
gorithm and an SSSP-based iterative algorithm using the
compute unified device architecture (CUDA) compatible
GPU (nVIDIA Corporation, 2008). CUDA is a develop-
ment framework for running massively multithreaded par-
allel applications on the GPU (Owens et al., 2007), which
consists of hundreds of processing elements, called stream
processors (SPs). They show that the SSSP-based algo-
rithm is approximately six times faster than the FW algo-
rithm and the former demonstrates a more scalable perfor-
mance with respect to the number |V | of vertices. However,
we think that the SSSP-based algorithm can be further
accelerated by memory access optimization. For example,
the algorithm may be modified such that it fully uses the
entire memory hierarchy, including fast but small on-chip
shared memory.

In this paper, we propose a variant of the SSSP-based
algorithm that enhances the previous method by exploit-
ing not only off-chip memory but also on-chip memory.
The proposed method extends the preliminary work pre-
sented in (Okuyama et al., 2008). Our method uses a dif-
ferent parallelization scheme for the cost computation of
APSPs in order to save the bandwidth between off-chip
memory and SPs. In addition to the fine-grained paral-
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lelism exploited by the previous method, we exploit the
coarse-grained parallelism existing between different SSSP
problems. That is, the proposed scheme exploits task par-
allelism so that it solves in parallel multiple SSSP problems
with different sources. This allows SPs to simultaneously
access the same data because each SP takes the responsi-
bility for solving one of the task-parallel problems. Such
common access leads to an efficient use of on-chip shared
memory, which is useful to reduce data accesses to off-chip
memory. Furthermore, the proposed scheme contributes to
achieve higher speedup with more parallel tasks and less
synchronization on the GPU. We also describe how APSPs
can be recorded with their costs.

The rest of the paper is organized as follows. Section 2
gives a brief introduction of related work. Section 3 de-
scribes an overview of CUDA and Section 4 summarizes
the previous SSSP-based method. Section 5 presents our
algorithm and Section 6 shows experimental results. Fi-
nally, Section 7 concludes the paper.

2 Related Work

Harish and Narayanan (2007) present two APSP algo-
rithms, namely the FW algorithm and the SSSP-based it-
erative algorithm, both implemented using CUDA. They
demonstrate that the SSSP-based implementation takes
approximately 10 seconds to obtain APSP costs for a graph
of |V | = 3072 vertices. The speedup over the CPU-
based FW implementation reaches a factor of 17. With
respect to memory consumption, their SSSP-based algo-
rithm requires O(|V |) space while the FW algorithm re-
quires O(|V |2) space. This advantage allows us to deal
with larger graphs, up to |V | = 30, 720 vertices processed
within two minutes. However, only off-chip memory is used
because (1) there is no data that can be shared between
SPs and (2) the entire graph data is too large for 16 KB
of on-chip memory.

Katz and Kider (2008) propose an optimized version of
the FW implementation running on the CUDA-compatible
GPU. Their method is based on a blocked FW algorithm
proposed by Venkataraman et al. (2000). It takes 13.7
seconds to compute APSPs for a graph of |V | = 4096. A
multi-GPU version is also presented to demonstrate the
scalability of their method. It takes 354 seconds to process
a graph of |V | = 11, 264 vertices on two nVIDIA GeForce
8800 GT cards.

Bleiweiss (2008) implements Dijkstra’s algorithm and
A* search algorithm (Hart et al., 1968) with a priority
queue using CUDA. Their implementations are designed
for agent navigation in crowded game scenes, where multi-
ple point-to-point shortest paths are simultaneously com-
puted for smaller graphs. Thus, their problem is slightly
different from our target problem.

Micikevicius (2004) presents an OpenGL-based method
that implements the FW algorithm on the GPU by map-
ping it to the graphics pipeline. The implementation runs
on an nVIDIA GeForce 5900 Ultra, which demonstrates
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three times faster results compared with a 2.4 GHz Pen-
tium 4 CPU. It takes approximately 203 seconds to com-
pute APSPs for |V | = 2048.

An FPGA-based method is proposed by Bondhugula
et al. (2006). They implement a tiled version of the FW
algorithm and develop an analytical model to predict the
performance for larger FPGAs. As compared with a CPU-
based method running on a 2.2 GHz Opteron, their method
reduces execution time for |V | = 16, 384 from approxi-
mately four hours to 15 minutes, achieving a speedup of
15.2.

An automated tuning approach is proposed by Han et al.
(2006) to accelerate the FW algorithm on the CPU. Their
method is optimized by cache blocking and single instruc-
tion, multiple data (SIMD) parallelization (Grama et al.,
2003; Klimovitski, 2001). Using a 3.6 GHz Pentium 4
CPU, it takes 30 seconds to solve an APSP problem for
|V | = 4096.

Finally, Srinivasan et al. (2006) show a cluster approach
to parallelize the FW algorithm on a distributed memory
machine. However, the performance does not scale well
with the number of computing nodes, because the data size
|V | seems to be small for the deployed cluster. A speedup
of 1.2 is observed on a 32-node system when using a graph
with |V | = 4096.

With respect to the FW implementation, the timing re-
sults mentioned above are limited by the memory band-
width rather than the arithmetic performance: 76.8, 36.8,
and 80.1 GB/s (9.6, 4.6, and 10 GFLOPS) on the FPGA
(Bondhugula et al., 2006), the CPU (Han et al., 2006), and
the GPU (Katz and Kider, 2008), respectively. Similarly,
the SSSP-based method can be regarded as a memory-
intensive application rather than a compute-intensive ap-
plication. Actually, it requires two operations and at least
two memory accesses to update the cost of a vertex. Thus,
considering the ratio of the memory bandwidth to the
arithmetic performance, the SSSP-based method requires
at least 1 B/FLOP while the GPU employed by Harish
and Narayanan (2007) provides 0.25 B/FLOP. Therefore,
the performance will be increased if we save the memory
bandwidth between off-chip memory and SPs.

3 Compute Unified Device Architecture

CUDA (nVIDIA Corporation, 2008) is a development
framework that allows us to write GPU programs without
understanding the graphics pipeline. Using this frame-
work, we can assume that the GPU is a SIMD machine
that accelerates highly threaded applications by process-
ing thousands of threads in parallel. The GPU program is
generally called as kernel, which is launched from the CPU
code to process threads in a SIMD fashion. The same ker-
nel is executed for every thread but with different thread
IDs to perform SIMD computation.

Figure 1 shows an overview of the GPU architecture.
The GPU employs a hierarchical architecture that consists
of several multiprocessors (MPs), each having stream pro-

Device Memory

SP

Graphics Board

Multiprocessor (MP)

SP SP…

Graphics Processing Unit (GPU)

CPU

SP

…

…

Shared Memory

Main Memory

MP

MP

Figure 1: CUDA hardware model. SP denotes stream pro-
cessor.

cessors (SPs) for processing threads. The important point
here is that SPs within the same MP are allowed to share
on-chip memory called shared memory. This memory hier-
archy is useful to save the memory bandwidth between SPs
and off-chip memory called device memory, because it can
be used as a software cache shared by multiple SPs belong-
ing to the same MP. Accordingly, a hierarchical structure
is incorporated into threads to realize efficient data access.
That is, threads are structured into equal-sized groups,
each called a thread block. Developers have to write their
kernel such that there is no data dependence between dif-
ferent thread blocks because each thread block will be in-
dependently assigned to an MP. Due to the same reason,
the GPU does not have a mechanism that synchronizes all
threads. Such global synchronization involves splitting the
kernel into two pieces, which are then launched sequen-
tially from the CPU.

Each MP processes a thread block in the following way.
Suppose that a block is assigned to an MP. The MP then
splits the block into groups of threads called warps. The
number of threads in a warp, which is defined as 32 threads
in current hardware, is called as the warp size. Each of
warps is then processed by the MP in a SIMD fashion.
Therefore, branching threads in the same warp will diver-
gent the warp. Such divergent warps (nVIDIA Corpora-
tion, 2008) degrade the performance because instructions
must be serialized due to different control flows.

While shared memory is almost as fast as registers, de-
vice memory takes 400 to 600 clock cycles to access data.
Therefore, the GPU architecture is designed to hide this
latency with independent computation. This also explains
why thread blocks must be independent. Such independent
blocks are useful to allow MPs to continue computation by
switching the block that has to wait data from device mem-
ory. Therefore, it is better to assign multiple thread blocks
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Figure 2: Cost minimization. (a) For each vertex v in the
graph, (b) the costs of its neighbours n0, n1, and n2 are
updated in the scattering phase.

to every MP. However, memory resources such as shared
memory and registers usually limit the number of thread
blocks per MP.

Memory coalescing (nVIDIA Corporation, 2008) is also
important to achieve the full utilization of the wide mem-
ory bus between device memory and SPs. Using this
technique, the memory accesses issued from threads in
a half-warp can be coalesced into a single access if the
source/destination address satisfies an alignment require-
ment: a thread with ID N within the half-warp should ac-
cess address base+N , where base is a multiple of 16 bytes
(nVIDIA Corporation, 2008). Note that this requirement
is relaxed in recent GPUs, which automatically perform
memory coalescing. Our algorithm assumes the strict re-
quirement to be executable on older GPUs.

4 SSSP-based Iterative Algorithm

Harish and Narayanan (2007) compute the costs of APSPs
in a directed graph G = (V,E,W ) with positive weights,
where V is a set of vertices, E is a set of edges, and W is
a set of edge weights on the graph G. In the following, let
|V | and |E| be the number of vertices and that of edges,
respectively. Given a graph G, the method computes an
SSSP |V | times with varying the source vertex s ∈ V . This
iteration is sequentially processed by the CPU, but each
SSSP problem is solved in parallel on the GPU.

To solve an SSSP problem, an iterative algorithm (Har-
ish and Narayanan, 2007) is implemented using CUDA.
This algorithm associates every vertex v ∈ V with cost cv,
which represents the cost of the current shortest path from
the source s to the destination v. The algorithm then mini-
mizes every cost until converging to the optimal state. This
cost minimization is done by processing two phases alter-
natively: the scattering phase and the checking phase. In
the scattering phase, all vertices try to minimize the costs
of their neighbours in parallel. Figure 2 illustrates how this
minimization works for a single vertex v. After this, the
checking phase confirms whether the previous scattering
phase has changed the costs of vertices.

Figure 3 shows this algorithm. Firstly, the cost of every
vertex v ∈ V except the source s is initialized to infinity,

4

5

10

6

8

9

7 2
0

5

4

7

6

31 1

3

2

12

15

0 2 3 5 8 10 10 11

1 2 4 4 7 0 6 7 3 6 5 5

9 7 15 1 3 12 4 2 6 8 5 10

0 1 2 3 4 5 6 7

Wa

Ea

Va

Figure 4: Adjacency list representation. Array V a stores
the indices to the head of each adjacency list in Ea. Array
Ea and Wa store adjacency lists of every vertex and edge
weight, respectively.

which means that v is not reachable from s at the initial
state. On the other hand, the cost is set to zero for the
source s. The cost minimization then begins at line 4 for a
set M of vertices, where M is the modification set, which
contains vertices whose neighbour(s) have not yet reached
to the optimal state. Given such a vertex v ∈ M , the al-
gorithm updates the cost cn at line 9, for every neighbour
n ∈ V such that (v, n) ∈ E. The updated cost here is
temporally stored to a variable un in order to check con-
vergence later at line 13. Vertices that have changed their
costs are added to set M for further minimization (line
14). The iteration stops when M becomes empty.

This algorithm requires synchronization between the
scattering phase and the checking phase (line 12). Oth-
erwise, some processing elements might overwrite the up-
dated cost uv after uv has been confirmed to be minimal. It
also should be noted that the algorithm requires atomic in-
structions to correctly process the scattering phase. Since
multiple processing elements can update the same cost un

at the same time, we have to deal with the consistency
of concurrent write access. Atomic instructions solve this
issue but they are supported only on GPUs with compute
capability 1.1 and higher (nVIDIA Corporation, 2008). If
we lack this capability, the minimum cost un will be over-
written by a larger cost at line 9, resulting in a wrong
result.

We now explain how Harish and Narayanan implement
the algorithm on the GPU. As we mentioned earlier, there
is no global synchronization mechanism in CUDA. There-
fore, they develop two kernels, each for the scattering phase
and for the checking phase. In both kernels, a thread is
responsible for a vertex v ∈ V in the graph. Thus, the cost
minimization is parallelized using |V | threads.

Figure 4 illustrates how a graph is represented in their
kernels. They employ an adjacency list representation to
store a graph in device memory. In this representation,
each vertex data has a pointer to its adjacency list of edges.
The adjacency list of vertex v here contains every neigh-
bouring vertex n ∈ V such that (v, n) ∈ E. Harish and
Narayanan convert these lists into arrays V a, Ea, and Wa,
which store vertex set V , edge set E, and weight set W ,
respectively. As shown in Fig. 4, element V a[v] has an in-
dex to array Ea, where the head of the adjacency list of v
exists. Since all adjacency lists are concatenated into array
Ea of size |E|, the adjacency list of vertex v is stored from
element V a[v] to V a[v+1]−1 in Ea. Similarly, the weight
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SSSP Algorithm(s, V , E, W ) /* s: source vertex */
1: initialize cv := ∞ and uv := ∞ for all v ∈ V /* uv: updated cost of vertex v */
2: cs := 0 /* cv: current cost of vertex v */
3: M := {s}
4: while M is not empty do
5: for each vertex v ∈ V in parallel do
6: if v ∈ M then /* Scattering phase */
7: remove v from M
8: for each neighbouring vertex n ∈ V such that (v, n) ∈ E do
9: un := min(cn, cv + wv,n) /* wv,n: weight of edge (v, n) */

10: end for
11: end if
12: synchronization
13: if cv > uv then /* Checking phase */
14: add v to M
15: cv := uv

16: end if
17: end for
18: end while

Figure 3: Iterative algorithm for finding an SSSP from the source vertex s ∈ V .

SSSP Scattering Kernel(V a, Ea, Wa, Ma, Ca, Ua)
1: v := threadID
2: if Ma[v] = true then
3: Ma[v] := false
4: for i := V a[v] to V a[v + 1] − 1 do
5: n := Ea[i]
6: Ua[n] := min(Ua[n], Ca[v] + Wa[n])
7: end for
8: end if

Figure 5: Pseudocode of scattering kernel (Harish and
Narayanan, 2007). This kernel is responsible for a single
vertex v and updates the costs of its adjacent vertices.

of edge Ea[i] is stored in Wa[i], where 0 ≤ i ≤ |E| − 1.
In addition to the arrays mentioned above, they use addi-
tional arrays Ma, Ca, and Ua to store modification set M ,
current cost cv, and updated cost uv, respectively. Each of
these arrays has |V | elements and its index v corresponds
to vertex v. They store these three arrays in device mem-
ory.

Figure 5 shows a pseudocode of the scattering kernel,
which implements lines 6–11 in Fig. 3. This kernel is in-
voked for every thread tv, which is responsible for vertex
v ∈ V . After this kernel execution, the CPU launches the
second kernel to process the checking phase. This checking
kernel updates array Ma and also sets a flag to true if any
updated cost is found. The CPU then checks this flag to
determine if the iteration should be stopped or not. Thus,
the flag prevents the CPU from scanning the entire array
Ma.

5 Task Parallel Algorithm

We now describe the proposed algorithm for accelerat-
ing the computation of APSPs on a directed, positively

weighted graph G. Firstly, we present how our algorithm
accelerates the cost computation of Harish’s SSSP-based
method. We then describe how the algorithm records the
paths after the cost computation.

5.1 Cost Computation

As shown in Fig. 6(b), our algorithm computes N tasks in
parallel, where a task deals with an SSSP problem. This
task parallel scheme allows us to share graph data between
different tasks. Another important benefit is that it allows
the kernel to generate more threads at a launch. This leads
to an efficient execution on the GPU, which employs a mas-
sively multithreaded architecture. Since the algorithm we
use for a single SSSP problem is the same one developed by
Harish and Narayanan (2007), we explain here how tasks
are grouped to share the graph data.

Let ps denote the SSSP problem with the source vertex
s ∈ V . The APSP problem consists of |V | SSSP prob-
lems p0, p1, . . . , p|V |−1 and there is no data dependence
between them. Therefore, we can pack any N problems
into a group to solve the group in parallel, where 1 ≤
N ≤ |V |. Thus, the k-th group contains N SSSP problems
pkN , pkN+1, . . . , p(k+1)N−1, where 0 ≤ k ≤ d|V |/Ne − 1.
Let Sk denote the set of source vertices in the k-th group
of N SSSP problems, where 0 ≤ k ≤ d|V |/Ne − 1. The
proposed scheme then computes SSSPs from every source
s ∈ Sk on the GPU while it invokes this computation
d|V |/Ne times sequentially from the CPU. We assign a
vertex to a thread as Harish and Narayanan do in their al-
gorithm. Accordingly, our kernel processes N |V | threads
in parallel while the previous kernel does |V | threads, as
shown in Fig. 6.

Similar to Harish’s algorithm, our algorithm consists of
the scattering phase and the checking phase, as shown in
Fig. 7. However, our algorithm differs from the previous
algorithm with respect to the use of shared memory in
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Figure 6: Comparison of parallelization scheme between (a) previous method (Harish and Narayanan, 2007) and (b)
proposed method. Our kernel solves N SSSP problems at a time. The graph data is shared between threads that are
responsible for the same vertex but in different SSSP problems.

N SSSPs Algorithm(Sk, V , E, W ) /* Sk: set of source vertices */
1: initialize cv,s := ∞ and uv,s := ∞ for all v ∈ V and s ∈ Sk /* uv,s: updated cost of vertex v in problem ps */
2: initialize cs,s := 0 for all s ∈ Sk /* cv,s: current cost of vertex v in problem ps */
3: add pair 〈s, s〉 to set M for all s ∈ Sk

4: while M is not empty do
5: for each vertex v ∈ V and each source s ∈ Sk in parallel do /* Scattering phase */
6: if 〈v, s〉 ∈ M then
7: remove 〈v, s〉 from M
8: for each neighbouring vertex n ∈ V such that (v, n) ∈ E do
9: un,s := min(cn,s, cv,s + wv,n)

10: end for
11: end if
12: synchronization
13: if cv,s > uv,s then /* Checking phase */
14: add 〈v, s〉 to M
15: cv,s := uv,s

16: end if
17: end for
18: end while

Figure 7: Algorithm for finding SSSPs from each s of source vertices Sk.

the scattering phase. Let tv,s be the thread, which is re-
sponsible for vertex v ∈ V in problem ps, where s ∈ V .
In our algorithm, thread tv,s tries to update the cost cn,s

(variable un,s at line 9 in Fig. 7), which represents the
cost of neighbouring vertex n ∈ V in problem ps. The
graph data that can be shared between threads is edge
(v, n) at line 8 and weight wv,n at line 9, because both
variables do not depend on the source vertex s. In or-
der to share such s-independent data between threads, we
structure a thread block such that it includes N threads
tv,kN , tv,kN+1, . . . , tv,(k+1)N−1, which are responsible for
the same vertex v but in different problems. Figure 8 shows
the data structure more precisely. Note that every thread
block contains a multiple B of such N threads to increase
the block size for higher performance. Thus, such threads
can save the memory bandwidth if they update the costs of
their neighbours. However, it requires additional copy op-
erations to duplicate data to shared memory. Therefore,
threads might degrade the performance if such common

access rarely occurs during execution.

With respect to the graph representation, our kernel uses
a slightly different data structure from the previous ker-
nel. We use the same arrays V a, Ea, and Wa, but they
are partially shared between threads as mentioned before.
The remaining arrays Ca, Ua, and Ma are separately allo-
cated for every problem ps, so that these arrays have N |V |
elements as shown in Fig. 8(b). The reason why we need
such larger arrays is that the GPU does not support dy-
namic memory allocation though each SSSP problem can
have a different number of unoptimized vertices at each
iteration. Therefore, we simply use N times more arrays
to provide dedicated arrays to each of N problems.

This decision might prevent us from using small shared
memory for arrays Ca, Ua, and Ma. However, it is not a
critical problem because each element in these arrays is ac-
cessed only by its responsible thread. Instead, as shown in
Fig. 8(b), it is important to interleave array Ma to allow
threads tv,0, tv,1, . . . , tv,N−1 in the same thread block to
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Figure 8: Array interleaving for coalesced memory ac-
cesses. (a) A straightforward layout for Ma, Ca, and Ua
stores all data for every SSSP problems into contiguous se-
quences. (b) The same vertices but for different problems
are stored in a contiguous address space. B = 2, in this
case.

access array elements in a coalesced manner. Similarly, we
arrange arrays Ca and Ua into the same structure to real-
ize coalesced accesses in the checking kernel. This also con-
tributes to simplify addressing for data accesses. However,
it is not easy to realize coalesced accesses in the scattering
kernel because every thread updates different elements of
Ua.

Figure 9 shows a pseudocode of our scattering kernel.
As we mentioned before, we use shared memory for vertex
set V , edge set E, and weight set W : arrays from, to, es,
and ws at lines 6 and 12. In addition, we also use shared
variable ms to perform reductions of modification set M
at lines 7–10. That is, set M is shared among N threads,
which are responsible for the same vertex v but for differ-
ent problems. This means that all of such N threads must
be engaged in data duplication if any of them has not yet
finished the minimization. This cooperative strategy is es-
sential to increase the number of coalesced accesses on the
GPU. For memory-intensive applications, we think that
SPs must be used for parallelization of memory accesses,
namely coalesced accesses, rather than that of computa-
tion. Note that this shared space is used only for this
purpose, so that we write the new set M directly to device
memory at line 22.

Similar to Harish’s algorithm, our method uses a flag to
check the convergence of cost computation. Since this flag
has to be shared between all threads, we store the flag in
global memory. However, we initialize per-block flags on
shared memory at the beginning of the checking kernel.
This duplication minimizes the overhead of serialization,
which can occur when many threads set the flag at the
same time. After checking the convergence, one of threads

N SSSPs Scattering Kernel(V a, Ea, Wa, Ma, Ca, Ua, N)
1: v := threadID div N /* vertex ID */
2: s := threadID mod N /* source (problem) ID */
3: /* vertex ID in arrays V a, Ma and Ca */
4: vg := blockID ∗B + v
5: /* Arrays in shared memory */
6: shared ms[B]
7: ms[v] := false
8: if Ma[vg, s] = true then
9: ms[v] := true

10: end if
11: if ms[v] = true then
12: shared from[N ], to[N ], es[B, N ], ws[B, N ]
13: /* Copy data to shared memory */
14: from[v] := V a[vg]
15: to[v] := V a[vg + 1]
16: neighbours := to[v] − from[v]
17: if s < neighbours then
18: es[v, s] := Ea[from[v] + s]
19: ws[v, s] := Wa[from[v] + s]
20: end if
21: if Ma[vg, s] = true then
22: Ma[vg, s] := false
23: for i := 0 to neighbours − 1 do begin
24: n := es[v, i]
25: Ua[n, s] := min(Ua[n, s], Ca[vg, s] + ws[v, i])
26: end for
27: end if
28: end if

Figure 9: Pseudocode of proposed scattering kernel. This
kernel solves N SSSP problems in parallel.

in each thread block writes the flag back to global memory.

5.2 Task Size Determination

The proposed kernel requires arrays of size (3N + 1)|V | +
2|E| in device memory while the previous kernel requires
those of 4|V |+2|E| size. Therefore, our kernel cannot deal
with larger graphs as compared with the previous kernel
though it has an advantage over the FW algorithm. Thus,
it is better to minimize N to compute APSPs for larger
graphs. In contrast, we should maximize N to receive the
timing benefit of shared memory. Therefore, selection of
N is an important issue in our algorithm.

There are two requirements that should be considered
when determining N . Firstly, N must be smaller than the
maximum size of a thread block to share data between
threads in the same thread block. Since the maximum size
is currently 512 threads (nVIDIA Corporation, 2008), this
requirement will be satisfied when N ≤ 512. Secondly,
N must be a multiple of warp size (32) to achieve coa-
lesced accesses and to reduce divergent warps. The second
requirement guarantees coalesced accesses to Ma because
every warp will contain threads that process the same ver-
tex v and access data in a contiguous address. Further-
more, such threads have the same number of iterations at
line 23 in Fig. 9 because they have to update the costs
of the same neighbours. This is useful to avoid divergent
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warps at line 23. However, we cannot eliminate all diver-
gent warps in the kernel because the branch instructions
at lines 17 and 21 depend on each thread.

According to the design considerations mentioned above,
we currently use N = 32 in our kernel. This configuration
allows us to eliminate synchronization from the scattering
kernel, because N is equivalent to the warp size. That
is, all threads that must be synchronized each other be-
long to the same warp, where SIMD instructions guaran-
tee implicit synchronization between threads. Otherwise,
threads in the same block have to synchronize each other
after loading data in shared memory. Finally, we experi-
mentally determine to use B = 4. Thus, thread blocks in
our kernel have 128 threads.

5.3 Path Recording

Our path recording framework is based on a backtracing
strategy that specifies the paths after the cost computation
presented in Section 5.1. That is, this strategy computes
the shortest path from the destination vertex d ∈ V to the
source vertex s ∈ V . To realize such a backtracing pro-
cedure, our method records which vertex has determined
the final costs after the cost minimization. Suppose that
we compute the shortest path from the source vertex s
to the destination vertex n1 in Fig. 2(b). Our algorithm
starts from vertex n1 and finds that the neighbouring ver-
tex v determines the cost of vertex n1. In other words, the
shortest path consists of vertex v, which is the parent of
vertex n1. The algorithm then moves to parent vertex v
and iterates this backtracing procedure until reaching the
source vertex s. This backtracing procedure can be pro-
cessed in O(|V |) time for each path, so that we compute
this procedure on the CPU.

In order to allow the CPU to perform backtracing, our
algorithm records all of parents after the cost computation.
For each source vertex s, we store parent vertices in array
Pa of size |V | such that element Pa[v, s] has the parent of
vertex v. This is done by an additional kernel, namely the
recording kernel, which is invoked after the convergence of
cost minimization. Since our method solves N SSSPs at a
time, the recording kernel also records all parents needed
for N SSSPs. A thread in the recording kernel is respon-
sible for a vertex v ∈ V as same as the scattering kernel.
Each thread tv,s records a direct predecessor u ∈ V as its
parent such that u satisfies cv,s = cu,s + wu,v. To find
such a parent, thread tv,s simply checks every direct pre-
decessor u ∈ V such that (u, v) ∈ E. Since this operation
requires predecessors for each vertex, we use inverted graph
G′ = (V,E′,W ′) to simplify the operation, where E′ con-
tains the inverted edge (v, u) of edge (u, v) ∈ E and W ′ is a
set of corresponding edge weights. Therefore, our method
further requires |V |+2|E| space to store the adjacency list
of G′. With respect to array Pa, we reuse the memory
space for array Ua, so that we do not allocate additional
space.

After recording all parents in Pa, the CPU backtraces
the shortest path from the destination vertex d to the

source vertex s (Cormen et al., 2001). Firstly, the CPU
refers Pa[d, s] to find the parent vertex u of vertex d.
The CPU then records u and finds the parent vertex of
u from Pa[u, s]. In this way, the CPU recursively back-
traces the path until reaching the source vertex s such
that Pa[u, s] = s.

6 Experimental Results

We evaluate the performance of our method by comparing
it with other two methods: the SSSP-based method (Har-
ish and Narayanan, 2007) and the Dijkstra-based method
(Dijkstra, 1959) running on the GPU and the multi-core
CPU, respectively. Note that the comparison is done with
respect to the cost computation. After this comparison,
we also evaluate the overhead of path recording.

The Dijkstra-based method is accelerated using a binary
heap. Furthermore, we parallelize the method using all
CPU cores. In more detail, we do not parallelize this al-
gorithm but run a serial program with different sources on
each CPU core, because there is no efficient parallelization
for Dijkstra’s algorithm. Thus, a CPU thread is responsi-
ble for solving SSSP problems for a subset of source ver-
tices. CPU threads are managed using OpenMP (Chandra
et al., 2000).

We execute GPU-based implementations on a PC with
an nVIDIA GeForce 8800 GTS (G92 architecture). This
graphics card has 512 MB of device memory and 16 MPs,
each having 8 SPs. It also should be mentioned that G92
architecture supports atomic instructions to correctly pro-
cess the scattering kernel. CUDA-based implementations
run on Windows XP with CUDA 2.0 and driver version
178.28. The Dijkstra-based method is executed on an In-
tel Xeon 5440 2.83 GHz quad-core CPU, 12 MB L2 cache,
and 8 GB RAM.

6.1 Performance Scalability on Graph Size

We investigate the performance with varying the graph
size in terms of the number |V | of vertices and that |E|
of edges. The graph data we used in this experiment is
random graphs generated by a tool (DIMACS implemen-
tation challenge). Using this tool, we generate graphs such
that every weight has an integer value within the range
[1, wmax], where wmax = |V |.

Figure 10 shows timing results obtained with varying the
number |V | of vertices. During measurements, the number
|E| of edges is fixed to |E| = 4|V |, meaning that a single
vertex has four outgoing edges in average. In addition to
the three methods mentioned before, we also implement an
unshared version of the proposed method that uses device
memory instead of shared memory. Due to the capacity of
on-board memory, our method fails to solve the problem
for |V | = 1.2M while Harish’s method can deal with |V | =
10.7M on our machine.

As compared with the previous SSSP-based method, the
proposed method achieves the best speedup of 13 when
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Figure 10: Timing results for random graphs with a dif-
ferent number |V | of vertices. Results are presented in
seconds.
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Figure 11: Speedup over the SSSP-based implementation
running on the CPU.

|V | = 1K. In particular, our method runs more efficiently
than the previous method when the graph has fewer ver-
tices. The reason for this is that our method has many
threads that can be used for hiding the memory latency.
For example, it generates 32K threads for 16 MPs when
|V | = 1K, which is equivalent to 2K threads per MP. In
contrast, the previous method has 64 threads per MP.
Thus, more threads belonging to different thread blocks
are assigned to every MP in our method. Such multiple
assignments are essential to hide the latency with other
computation, making the GPU-based methods faster than
the CPU-based Dijkstra method, which is faster than the
previous method (Figure 11).

Since the proposed method solves N SSSP problems at a
time, the number of kernel launches is reduced to approx-
imately 1/N as compared with the previous method. This
implies that we can reduce the synchronization overhead
needed at the end of a kernel execution. This reduction
effects are observed clearly when |V | is small, where syn-
chronization cost accounts for a relatively large portion
of total execution time. Thus, less synchronization allows
threads to have shorter waiting time at the kernel comple-
tion.

By comparing the proposed two methods, the speedup

|E|: Number of edges
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Figure 12: Timing results with different number |E| of
edges. The number |V | of vertices is fixed to |V | = 4K.

achieved by shared memory ranges from a factor of 1.2 to
that of 1.4. This speedup is achieved by shared memory,
which eliminates approximately 16% of the data access be-
tween SPs and device memory compared to the proposed
method without shared memory. On the other hand, the
unshared version of the proposed method is at least 1.9
times faster than the previous method. Thus, the acceler-
ation is mainly achieved by the task parallel scheme rather
than shared memory. However, the speedup achieved by
the task parallel scheme decreases as |V | increases, be-
cause the increase allows the previous method to assign
many threads to MPs, as we do in our method. In con-
trast, the speedup given by shared memory increases with
|V |. Therefore, we think that shared memory is useful to
deal with larger graphs.

Figure 12 shows timings results for graphs with a dif-
ferent number |E| of edges. Every graph has the same
number of vertices: |V | = 4K. These results indicate that
all methods increase the execution time with |E|. In par-
ticular, the shared version of the proposed method shows
better acceleration results as |E| increases. Thus, shared
memory can effectively reduce the number of data reads
from global memory for larger graphs with many edges and
vertices. It also should be noted that the proposed method
uses O(BN) space in shared memory, which is independent
from the graph size |V | and |E|. Thus, the graph size is
limited by the capacity of device memory rather than that
of shared memory.

6.2 Performance Stability on Graph Attributes

Figure 13 shows the results obtained using graphs with a
different maximum weight wmax. All graphs have the same
numbers of vertices and edges: |V | = 4K and |E| = 16K.
These results show that the execution time increases with
wmax. However, this increasing behaviour is not so sharp
as compared with that shown in Fig. 12, because wmax

does not directly affect the execution time. The increase
of wmax means that the graph has edge weights with a
larger distribution. In such a case, we need more itera-
tions to minimize the costs, because shorter paths hav-
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Table 1: Timing results for some graph topologies. Results are presented in seconds.

Method Platform
Topology

Random Power law Ring Complete
SSSP-based (Harish and Narayanan, 2007) 4.39 6.37 687 5730
Proposed w/o shared memory GPU 0.884 1.73 53.7 175
Proposed 0.669 0.942 58.2 77.3
Dijkstra SSSP-based (4 threads) CPU 0.835 0.437 0.0962 158
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Figure 13: Timing results with different maximum weight
wmax. The number |V | of vertices and the number |E| of
edges are fixed to |V | = 4K and |E| = 16K.

ing many edges can overwrite costs that have updated by
longer paths having a few edges with larger weights. In
addition, a change of a cost of vertex u affects the cost of
vertex v, where the temporal shortest paths from source
vertex to v pass through u.

We next investigate the performance on different topolo-
gies. Table 1 shows timing results for various graph topolo-
gies. Every graph data has the same number |V | = 4677
of vertices but with different topologies: a random graph
(DIMACS implementation challenge), a power law graph
(Bader and Madduri; Chakrabarti et al., 2004), a ring, and
a complete graph. The random graph and the power law
graph have |E| = 16K edges with wmax = 4096. The re-
maining two graphs have the same weight wmax = 1 for all
edges. The power law graph has many low-degree vertices
but also has less high-degree vertices. In more detail, the
maximum and average outdegrees in our graph are 834 and
3.5, respectively, and 84% of vertices have a lower degree
than 3.

In this table, we can see that all methods significantly
vary their performance depending on the graph topol-
ogy. The GPU-based methods outperform the CPU-based
method with respect to the random graph and the com-
plete graph. However, the CPU-based method provides
the fastest result for the ring graph. This is due to the
employed parallel algorithm rather than the GPU imple-
mentation, because every vertex in the ring graph has a
single outgoing edge, which serializes the scattering phase.
Thus, the problem is left on the parallel algorithm rather
than the implementation.

For the power law graph, the GPU-based methods basi-
cally decrease their performance as compared with that for
the random graph. We think that this is due to the load
imbalance in the scattering kernel, because the power law
graph has wide outdegrees ranging from 0 to 834. Thus,
the most loaded thread has to update 834 neighbours while
84% of threads do this only for at most 3 neighbours. Such
a load imbalanced situation will increase the kernel execu-
tion time. Actually, the power law graph requires 28% less
kernel launches than the random graph. Thus, the GPU-
based methods can vary the performance according to the
graph degree. The workload will be balanced if every ver-
tex has the same number of outgoing vertices. Otherwise,
a sorting mechanism will help us improve the performance.

The previous method takes 156 times longer time to
solve the ring graph as compared with the random graph.
This increasing time can be explained by the number of
kernel launches. The ring graph has a unique topology
where every vertex has a single edge. Since the previous
kernel updates the neighbouring cost of a single vertex, it
has to launch the kernel |V | = 4677 times to compute an
SSSP in this case. In contrast, it requires only 23 launches
per SSSP for the random graph. Thus, the ring graph re-
quires 203 times more launches than the random graph,
increasing the execution time.

The proposed method also takes longer time for the ring
graph but it is approximately 12 times faster than the pre-
vious method. We expect a 32-fold speedup over the previ-
ous method, because our method simultaneously processes
N = 32 vertices using 128 SPs. Thus, there is a gap be-
tween measured performance and expected performance.
This gap can be explained by the branch overhead and the
duplication overhead. Our method has more branch in-
structions in the scattering kernel due to the use of shared
memory. Moreover, it requires duplication operations to
use shared memory, but this overhead can degrade the per-
formance as we mentioned in Section 5.1. The duplication
overhead also explains why the unshared version outper-
forms the shared version when processing the ring graph.

The complete graph shows the worst result among the
four topologies used in this experiment. As compared with
the random graph, the previous method and our method
spend 1310 times and 116 times longer time for the com-
plete graph, respectively. In this graph, every vertex has
|V | − 1 neighbours, so that |V | − 1 repetitions are re-
quired to write new costs of neighbours in the scatter-
ing kernel. Since each thread sequentially processes these
repetitions, the scattering kernel spends relatively longer
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Figure 14: Overhead of path recording for random graphs
with a different number |V | of vertices. Overhead explains
the increased time due to the recording kernel called after
cost computation.

time. Although these repetitions are common to both of
the proposed and previous kernels, our kernel demonstrates
a higher tolerance to these repetitions. This tolerance is
given by shared memory because each thread refers |V |−1
elements of Ea and Wa, which is duplicated in on-chip
shared memory.

6.3 Overhead of Path Recording

Finally, we analyze the overhead of path recording. Figure
14 shows the ratio of the recording kernel to the remain-
ing two kernels in terms of execution time. That is, the
execution time in Fig. 10 will be increased by the ratio in
Fig. 14 if APSPs are recorded after the cost computation.
Note that the overhead does not include the execution time
spent for backtracing on the CPU. According to Fig. 14,
the overhead of path recording ranges from 3.0% to 7.7%.
This overhead is mainly due to the recording kernel. In
addition to this additional kernel execution, we also need
to send array Pa back to the main memory.

7 Conclusion

In this paper, we have proposed a fast algorithm for finding
APSPs using the CUDA-compatible GPU. The proposed
algorithm is based on Harish’s SSSP-based method and
increases the performance by on-chip shared memory. We
exploit the coarse-grained task parallelism in addition to
the fine-grained data parallelism exploited by the previ-
ous method. This combined parallelism makes it possi-
ble to share graph data between processing elements in
the GPU, saving the bandwidth between off-chip memory
and processing elements. It also allows us to run more
threads with less kernel launches, leading to an efficient
method for highly multithreaded architecture of the GPU.
The method is also capable of recording shortest paths as
well as their costs.

The experimental results show that the proposed
method is 2.8–13 times faster than the previous SSSP-
based method. As compared with the previous method,
the task parallel scheme demonstrates higher performance
for smaller graphs. However, this advantage becomes
smaller when dealing with larger graphs with more ver-
tices. In contrast, shared memory increases its effects for
larger graphs with more vertices and edges. With respect
to the graph topology, we show that the ring graph seri-
alizes both the previous and proposed methods. We also
demonstrate that both methods vary their performance ac-
cording to the graph degree. The overhead of path record-
ing is at most 7.7% for random graphs.

One future work is to deal with large graphs that can-
not be stored entirely on device memory. Such large graphs
involve data decomposition due to the lack of memory ca-
pacity.
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