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Sequence Homology Search using Fine-Grained
Cycle Sharing of Idle GPUs

Fumihiko Ino, Member, IEEE, Yuma Munekawa, and Kenichi Hagihara

Abstract—In this paper, we propose a fine-grained cycle sharing (FGCS) system capable of exploiting idle graphics processing units
(GPUs) for accelerating sequence homology search in local area network environments. Our system exploits short idle periods on
GPUs by running small parts of guest programs such that each part can be completed within hundreds of milliseconds. To detect such
short idle periods from the pool of registered resources, our system continuously monitors keyboard and mouse activities via event
handlers rather than waiting for a screensaver, as is typically deployed in existing systems. Our system also divides guest tasks into
small parts according to a performance model that estimates execution times of the parts. This task division strategy minimizes any
disruption to the owners of the GPU resources. Experimental results show that our FGCS system running on two non-dedicated GPUs
achieves 111–116% of the throughput achieved by a single dedicated GPU. Furthermore, our system provides over two times the
throughput of a screensaver-based system. We also show that the idle periods detected by our system constitute half of the system
uptime. We believe that the GPUs hidden and often unused in office environments provide a powerful solution to sequence homology
search.

Index Terms—Distributed systems, performance of systems, fine-grained cycle sharing, homology search, Smith-Waterman algorithm,
GPGPU, CUDA.
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1 INTRODUCTION

H OMOLOGY search is one of the most fundamental tasks
in bioinformatics. The objective of this search is to detect

fragments of database sequences that are similar to a given
sequence, namely a query sequence. Finding such similar
sequences is useful for understanding complex biological phe-
nomena. For example, the findings may lead us to understand
functional and evolutionary relationships between biological
sequences.

Homology search can be performed by iteratively process-
ing a pairwise algorithm that determines similar fragments
between two sequences. The Smith-Waterman (SW) algorithm
[1] is widely used for this type of search. Because it generates
precise results, the SW algorithm is more sensitive than other
heuristic methods, such as BLAST [2] and FASTA [3], which
can miss weak similarities; however, the SW algorithm is com-
putationally intensive. Although the algorithm is optimized
using dynamic programming [4], its execution time is up to
40 times more than that of the typical heuristic methods [5].
Further hindering the use of the SW algorithm, biological
databases are rapidly increasing in size owing to the advance
in sequencing technology. For example, a protein sequence
database called UniProtKB/Swiss-Prot [6] doubles its number
of entries every two years, even though it consists of manually
annotated sequences.
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To address these problems, many researchers are trying to
speed up the SW algorithm by using accelerators, including
the graphics processing unit (GPU) [7], [8] and the Cell Broad-
band Engine (CBE) [9], [10]. These accelerators successfully
achieve a tenfold speedup over CPU-based implementations
such as SSEARCH [3]. As an example, Liu et al. [7] im-
plemented the SW algorithm using compute unified device
architecture (CUDA) [11], which is a development framework
for the NVIDIA GPU [12]. Their implementation, running on
two GeForce GTX 295 cards, achieves a throughput of 16.0
giga cell updates per second (GCUPS), which is slightly higher
than that of a CBE-based implementation [9].

In addition to the single-node systems mentioned above,
some researchers have developed multi-node systems to
achieve further acceleration. Singh et al. [13] developed a
volunteer computing system that accelerates the SW algorithm
on a pool of GPU-equipped resources. In general, volunteer
computing systems have two different types of users: hosts,
who donate their resources to the system, and guests, who
run computationally intensive applications on the donated
resources. Their system uses a screensaver-based middleware
called Berkeley Open Infrastructure for Network Computing
(BOINC) [14] to find idle resources from the pool. Since the
BOINC middleware was originally designed for CPUs, host
and guest applications could simultaneously run on the same
GPU, causing significant system slowdown. For example, the
frame rate of the display drops around 1 frame per second
(fps). Such slowdown results in disruption to hosts who
interactively operate their donated resources. Kotani et al.
[15] extended the screensaver-based approach to prevent such
resource conflicts by monitoring video memory usage. Their
system achieves five times higher throughput than a CPU-
based system [16].
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Thus, previous work has demonstrated that homology search
can be successfully accelerated using idle GPU cycles; how-
ever, the screensaver-based approach cannot detect the minutes
of idle time that occur before the screensaver is activated.
Since using a GPU typically provides a tenfold speedup
over using a CPU, we propose that the idle times missed in
screensaver-based systems can be utilized in achieving higher
throughput for the SW algorithm. Such GPU exploitation
contributes to deal with not only the performance issue but also
the power consumption issue. In 2010, a GPU-based system
called TSUBAME2.0 [17] ranked second in the Green500 list
[18], and GPU-based systems occupied two of the top three
places in the TOP500 list [19]. Thus, exploiting the power of
accelerators is necessary for next-generation high-performance
computers. GPU-accelerated machines in office environments
can be a solution to this green issue because such machines
are ordinarily powered on for interactive office work.

In this paper, we propose a fine-grained cycle sharing
(FGCS) system capable of exploiting idle GPUs for accel-
erating sequence homology search. Contrary to screensaver-
based approaches, our system is designed to identify and use
idle periods spanning a few seconds. To realize this idea, our
system detects short idle periods via event handlers monitoring
keyboard and mouse inputs. Once detected, idle periods are
used to run subtasks, namely small parts of a guest task.
Subtask granularity is determined at runtime according to a
performance model such that each part can be completed
within hundreds of milliseconds. Such small subtasks allow us
to minimize host disruption during guest task execution. Our
system also intelligently selects from the pool of registered
resources by utilizing the idle period length distribution, which
approximately follows a power law distribution. Since our
objective is to exploit idle resources in office settings, our
system currently runs on Windows, which is the standard
operating system for most office environments.

The remainder of the paper is structured as follows:
Section 2 presents preliminaries including an overview of
the SW algorithm and the CUDA-based implementation
[8] employed in our system; Section 3 describes our sys-
tem with a focus on the FGCS capability; Section 4
shows our experimental results; and Section 5 concludes
our paper and describes future work. Details on related
works, implementation issues, and additional evaluation re-
sults are presented in the supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.xxxx.xx.

2 GPU-ACCELERATED SMITH-WATERMAN
(SW) ALIGNMENT

2.1 Smith-Waterman (SW) Algorithm
The SW algorithm [1] gives an exact solution to the problem of
pairwise local alignment. The algorithm finds the most similar
part of two sequences according to the distance between
them. The distance here is the minimum operational cost
needed to transform one sequence into the other, with the
insertion/deletion of a gap or the substitution of a symbol in
the sequence.

Let A = a1a2 . . . an and B = b1b2 . . . bm be a query
sequence of length n and a subject sequence of length m,
respectively. ai represents the i-th symbol in A and bj repre-
sents the j-th symbol in B, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, the SW algorithm computes
the similarity score Hi,j of the optimal alignment ending at
positions i and j in A and B, respectively. Let Ei,j and Fi,j

be the similarity scores of the optimal alignment ending at the
same position but with a gap in A and B, respectively. Hi,j

is then recursively given by

Hi,j = max(Hi−1,j−1 + s(ai, bj), Ei,j , Fi,j , 0), (1)
Ei,j = max(Hi−1,j − α, Ei−1,j − β), (2)
Fi,j = max(Hi,j−1 − α, Fi,j−1 − β), (3)

where α is the gap penalty for the first gap, β is the gap
penalty for subsequent gaps, and s(ai, bj) represents the cost
to substitute symbol ai with symbol bj . Note that matrices H ,
E, and F are initialized with zeros.

According to Eqs. (1)–(3), the SW algorithm uses dynamic
programming to compute n×m cells in similarity matrix H .
The throughput in cell updates per second (CUPS) can be
given by nm/T , where T represents the execution time for
computing the matrix. After the matrix is filled, the algorithm
performs backtracing from the cell with the maximum score
in order to identify similar fragments. Thus, the SW algorithm
consists of two processing phases: (1) matrix filling and (2)
backtracing.

Since there are many subject sequences in the database,
the SW algorithm must be iteratively processed with different
subject sequences. Let S be the number of subject sequences
in the database and Q be that of query sequences that
compose a search job. We assume that a search job consists
of Q tasks (i.e., Q search queries), each corresponding to a
problem of local alignment between a query sequence and
S subject sequences. In homology search, the matrix filling
phase will be processed QS times to obtain QS matrices. In
contrast, the backtracing phase can be skipped in most cases
because we are usually interested only in high-scored cells.
Thus, the time complexity of the backtracing phase can be
approximated by O(Q) in practical situations. Accordingly,
the CPU can quickly complete the backtracing phase after the
GPU identifies high-scored cells at O(QS).

2.2 CUDA-Based Implementation

The CUDA-based implementation [8] employed in our system
accelerates the matrix filling phase on the NVIDIA GPU.
The implementation is based on Liu’s parallelization scheme
[20], which uses the OpenGL graphics library [21]. Both
implementations compute similarity scores between a query
sequence and S subject sequences. Two key aspects of our
implementation are summarized as follows:

• Pipelined execution. Centralized CPU code iteratively
loads a batch of L (≤ S) subject sequences from the
database and invokes a kernel [11] to process the batch. A
batch here corresponds to a subtask. Therefore, the kernel
will be invoked dS/Le times to complete a search task.
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Fig. 1. Parallel matrix filling on a single GPU. Each thread
block containing dn/4e threads is responsible for filling
one of L matrices. Matrix cells are computed by dn/4eL
threads from left-top to right-bottom.

This step-by-step alignment allows the CPU to pre-load
the next batch while the GPU processes the current batch.
Such overlapping execution is repeated until reaching the
last entry of the database. Our original implementation
uses the maximum batch size Lmax of 32,768, which is
restricted by the capacity of constant memory [8].

• Parallelization. As shown in Fig. 1, the kernel solves L
pairwise problems simultaneously. Given no data depen-
dence between different pairs of sequences, the imple-
mentation assigns a pairwise problem to a thread block
(TB) [11], which is a group of threads that are not allowed
to have data dependence between one another. Thus, the
kernel generates L TBs for L matrices. Each TB contains
dn/4e threads, and a thread is responsible for filling four
successive rows of a matrix.

3 HOMOLOGY SEARCH SYSTEM

In this section, we explain how resources are selected for
job execution and how kernel execution time is controlled
to minimize host disruption. The key to such minimization
is reducing kernel execution time at the ideal tradeoff point
between the throughput of guest applications and the delay of
host applications. This reduction allows the GPU to periodi-
cally switch the active kernel, which occupies the resources
in the GPU chip. If we do not reduce kernel execution time,
hosts will suffer frequent system slowdown because the GPU
cannot terminate kernel execution until its completion. In other
words, the GPU denies interruption of kernel execution, which
can make host applications wait for the completion of guest
applications.

This wait time results in a delay in updating the frame
buffer, namely the display, so that the length of the delay can
be equivalent to the execution time of guest kernels. In this
sense, it is unavoidable to perfectly eliminate the interference
to hosts. Thus, we have decided to reduce the execution
time of guest kernels to allow not only host applications to
quickly occupy the resources, but also guest applications to
run with nearly maximum throughput. This decision prevents
the interference from being visible, because the wait time is
fixed at certain value. Furthermore, we avoid running guest
applications when the GPU is busy with host applications.

3.1 System Overview

According to the assumption in Section 2.1, there is no data
dependence between different tasks. To deal with such inde-
pendent tasks, our system employs a master-worker paradigm,
which consists of a master and multiple worker machines. A
simple illustration of our system can be found in Fig. 10 of the
supplementary material. A worker corresponds to a machine
registered in the system. Our system assumes that each worker
has a single GPU. The master is the frontend machine that
manages workers and jobs as follows:

• Resource management. The master is responsible for
managing all registered resources. It has detailed resource
information, such as hardware specifications, arithmetic
performance, driver version, and video memory usage.
Furthermore, busy or idle state information is gathered
from the resource. Details of the interactions between the
master and workers are presented below in Section 3.2.

• Job management. The master accepts grid jobs from
guests, which are then queued to a job scheduler. The
job scheduler decomposes accepted jobs into independent
tasks (i.e., search queries) and assigns the tasks to idle
resources in a first-in-first-out manner. The appropriate
resources are selected according to resource information
mentioned above. Guests are allowed to specify the
resources to be used for their applications by using a
matchmaking mechanism [22]. This mechanism requires
guests to present a property description text file that
describes the requested resources using attributes and
comparison operators [15]. Details of job management
are presented in Section 3.3.

Workers are responsible for monitoring themselves and for
executing tasks as follows:

• Resource monitoring. Workers monitor their own re-
sources and send status information back to the master.
Network latency between the master and a worker may
cause the master to assign tasks to a worker that has
changed its status from idle to busy. In such a case, the
worker cancels the assigned task and notifies the master
of the failure. The failed task is then queued again to the
scheduler for reassignment. Given the inherently short
idle periods available, it is difficult for FGCS systems
to eliminate such scenarios. The method for determining
resource status is presented in Section 3.2.

• Task execution. The workers execute tasks assigned by
the master and return their computation results. An as-
signed task is divided into small subtasks (i.e., batches),
which are then processed in a pipelined, FGCS manner.
Workers also terminate a task whenever the responsible
resources turn out to be busy. Section 3.4 presents the
performance model used for task division. Section 3.5
explains the algorithm that fills the matrix in an FGCS
manner.

3.2 Idle Period Detection

Our system finds idle workers according to the following
definition: a worker is idle if both its CPU and GPU are
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Fig. 2. Idle GPU detection. We assume a GPU to be
idle if no keyboard or mouse activities are detected during
the last W time units, and video memory usage does not
change from a default value.

idle [15]. We take CPU status into consideration, because our
pipelined code overlaps file operations with kernel execution.
If CPU status is ignored, guest tasks may be assigned to
heavily loaded CPUs, which can significantly slow down the
matrix filling phase because of slow file operations [8].

Our system determines CPU status according to CPU usage
as follows: the CPU is idle if CPU usage is smaller than σ%,
where 0 ≤ σ ≤ 100 represents the threshold for determining
CPU status. This parameter can be specified by hosts to control
the maximum host disruption that can be accepted during guest
execution. The default value of σ is 10.

With respect to the GPU status, we extend the approach used
in our previous screensaver-based system [15] to determine the
GPU status for FGCS systems. Figure 2 illustrates how the sys-
tem detects idle GPUs. The system assumes that a GPU is busy
if one of the following two situations occurs on the worker:
(1) the GPU executes a kernel; or (2) the GPU updates frame
buffer, namely the display, because of the keyboard or mouse
activity. The former can be identified by monitoring video
memory usage, because the kernel consumes video memory.
The latter can be identified by detecting keyboard or mouse
events. A more detailed description of these identifications can
be found in Section 7.1 of the supplementary material.

Since event detection does not directly capture the update of
the frame buffer, it does not immediately imply the consump-
tion of GPU cycles. To deal with this gap, the system assumes
that the GPU is busy for a certain period after detection, as
shown in Fig. 2. In the figure, W is the timeout delay needed
to resume the idle state after event detection. The system
experimentally uses a wait time (W ) of one second.

3.3 Resource Selection

After workers detect idle periods, the master will be requested
to assign tasks to them. Since our system exploits short idle
periods, it is important to assign tasks to resources that are
most likely to stay in the idle state for the longest amount
of time. In this section, we describe how such resources are
selected from a list R of idle resources.

According to preliminary experiments, we found that the
length of idle periods approximates a power law distribution.
Figure 3 plots the overall distribution of idle period lengths.
These results were obtained from 14 desktop machines running
for 20 work days in our university. Plots in Fig. 3 can be
approximated by a straight line that implies a power law
relation. Suppose here that we have two idle resources, A
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Fig. 3. Distribution of idle period lengths obtained from
14 desktop machines running for 20 work days. Each
point (x, y) indicates that idle periods of x seconds are
observed y times. Both axes are in logarithmic scale.
See Fig. 18 of the supplementary material for typical
distributions obtained from each machine.

and B, which remain idle for one second and three seconds,
respectively. Figure 3 indicates that the conditional probabil-
ities of remaining idle in the next five seconds are 17% and
40% for resources A and B, respectively. Thus, the longer a
resource remains idle, the higher is the conditional probability
of remaining idle. That is, we can expect that the resources
that remain idle for a long time will probably keep their idle
state in the future. Therefore, our system gives higher priority
to such long-idle-period resources. To do this, the system
maintains the list of idle resources in descending order of
length of the current idle period. Resources are then selected
from the head of this resource list R in order to assign tasks
to them. Section 7.2 of the supplementary material describes
our resource selection algorithm in detail.

3.4 Performance Model
As mentioned above, host disruption will likely occur when the
SW code is executed as a guest application. Such disruptions
occur in the following two scenarios: (1) host applications
experience slow performance because the SW code consumes
CPU cycles, and (2) the update of the frame buffer can be
delayed or even skipped because of the guest kernel running
on the GPU. The former can be minimized by running the SW
code with low priority. Such an execution configuration allows
CPU resources to be assigned to host applications. The latter
can be minimized by reducing required kernel execution times.
Below, we describe how this reduction can be accomplished
according to our performance model, which estimates the
execution time of the matrix filling kernel.

Let k be the execution time of the matrix filling kernel.
Let m̂ also be the total length of subject sequences processed
by a single kernel invocation. The length m̂ can be given by
m̂ =

∑L
l=1 ml, where ml (1 ≤ l ≤ L) represents the l-th

subject sequence processed by the kernel invocation.
Our model must capture the performance bottleneck of

the matrix filling kernel in order to control kernel execution
time k. According to our previous profiling analysis [8], we
found that the kernel consists of instruction-bound code rather
than memory-bound code. Therefore, we decide to take the
time complexity of the matrix filling into consideration. The
model also captures the overhead of switching threads because
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the switching overhead can be regarded as a parallelization
overhead, which does not occur during serial execution. Thus,
kernel execution time k can be modeled by adding this
additional overhead to the time complexity as follows:

k = X · nm̂ + Y · dn/4eL, (4)

where X and Y represent the coefficient for the time com-
plexity and that for the thread-oriented overhead, respectively.
These coefficients are experimentally determined for hardware
and input configurations. See Section 8.1 of the supplementary
material for details.

The first term of Eq. (4) represents the time complexity of
the matrix filling phase, which can be given by the number
nm̂ of matrix cells to be filled by threads. The second term
represents the number dn/4eL of threads generated by a kernel
invocation. We assume a simple linear model that increases
the switching overhead with the number of threads, because
the GPU adopts a highly threaded architecture that overlaps
memory transactions with data-independent computation.

3.5 Matrix Filling for Fine-Grained Resource Sharing
The SW code must be modified to ensure kernel completion
within a short timeframe. To achieve this, our approach is to
dynamically select the appropriate value of L before kernel
invocation. In this section, we describe how we modify the
code to achieve this dynamic behavior.

Our modified code, which can be found in Fig. 12 of the
supplementary material, requires additional inputs as com-
pared to the original code: (1) maximum values Lmax of the
batch size and (2) K of the kernel execution time be specified
by the system. After loading the query sequence, the code
initializes coefficients X and Y according to the length n of
the query sequence and the hardware of the graphics card. It
then iteratively loads a subject sequence from the database.
The number L of loaded subject sequences is determined by
Eq. (4), which estimates kernel execution time k such that
k can be approximated with specified time K. After this
input/output (I/O) operation, the code invokes the matrix filling
kernel to compute matrices and sends results back to main
memory. This invocation is further iterated until the last entry
of the database is processed.

With respect to specified time K, we use a default value of
100 milliseconds. This value has typically been identified as
the maximum delay in a GUI because it is regarded as the limit
of human perception for changes in a GUI [23]. As mentioned
above in Section 3, specified time K may be equivalent to the
delay in updating the frame buffer. Thus, we expect that the
maximum delay will be approximately 100 milliseconds.

4 EXPERIMENTS
We compare our FGCS system with a screensaver-based
system [15], [16] in terms of alignment throughput. Before
describing this comparison, we evaluate the accuracy of the
performance model to investigate whether kernel execution
time is actually controlled by the performance model. We also
present a case study to better understand the impact of our
FGCS system. See Section 8 of the supplementary material
for a detailed explanation of experimental setup.
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Fig. 4. Distribution of kernel execution times versus query
sequence lengths n. The line segments display the range
between the minimum and maximum times and vertical
bars represent the 95% confidence intervals. Results are
measured with specified time K of 100 milliseconds.

4.1 Accuracy of Performance Model
By using the coefficients presented in Section 8.1 of the sup-
plementary material, we investigated kernel execution times to
evaluate the accuracy of the performance model. We executed
our modified code with different lengths n of the query
sequence. Figure 4 shows the distribution of kernel execution
time obtained on the GTX 285 card. For each n, the bar
shows the minimum value, the maximum value, and the
95% confidence interval. Since the code processes a series
of batches to complete a task, these values are computed from
the first batch to the second-to-last batch. The last batch is
not included because it does not have sufficiently long subject
sequences to keep the execution time close to specified time
K = 100.

In Fig. 4, 95% of kernel execution times range from 96
to 111 milliseconds; the mean time is 104 milliseconds.
These results are acceptable for our FGCS system, because its
purpose is to complete kernel executions within a relatively
short amount of time rather than to exactly obtain kernel
execution times of K. We obtained similar results on the
8800 GTX card, which can be found in Section 8.2 of the
supplementary material.

To investigate the overhead of task division, we measured
the total execution time spent for a query sequence. In contrast
to kernel execution time, the total execution time depends on
length n. Our modified kernel takes approximately 5.4 and
19.6 seconds to process a query of length n = 511 on the
GTX 285 and 8800 GTX cards, respectively. Since the original
kernel [8] takes 5.3 and 17.6 seconds to process the same query
on each card, the overhead is 2% and 11% on the GTX 285 and
8800 GTX cards, respectively. Thus, our kernel successfully
controls kernel execution time around 100 milliseconds despite
hardware differences, but reduces the efficiency on a slow card.

An important behavioral aspect of the original kernel is that
it increases kernel execution times as the code invokes more
kernels. This occurs because of subject sequence order. The
total length m̂ of subject sequences increases with the number
of kernel invocations, because the original kernel processes a
fixed number Lmax of sorted subject sequences. For example,
m̂ ranges from 277,475 to 8,533,652 amino acids in the
original kernel. In contrast, our modified code dynamically
decreases the number L of subject sequences to keep kernel
execution times at approximately K = 100 milliseconds.
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Fig. 5. Worker machine resource statistics. Resource status obtained during owner use over four days presented as
(a) percentages and (b) times.

4.2 Case study

The following case study was performed in our laboratory over
four days, each day from 10:00 to 18:00. Thus, we do not
consider offline time during which hosts can be continuously
exploited for guest applications. Such offline scenarios are
appropriately handled by existing systems. In contrast, our
system handles the non-dedicated situation. In this case study,
our system iteratively processed an alignment job containing
eight different query sequences. The length n of the query
sequences ranged from 63 to 511 amino acids. See Table 1
of the supplementary material for the specifications of worker
machines.

We first analyzed the breakdown of resource status and the
results are shown in Fig. 5. Idle time occupies, on an average,
54% of the system uptime. In addition, 25% of system uptime
is spent waiting, as described in Section 3.2. This wait time
corresponds to short idle periods of less than W = 1 second,
which are not exploited by our system. Workers #1, #2, #4,
and #8 have short GPU/CPU busy times, such that 90% of the
system uptime consists of idle time and wait time. Thus, the
owners of these machines perform their research using little of
their CPU and GPU resources. Such work typically includes
document editing, PDF file reading, and so on. Conversely,
workers #3, #5, and #6 have relatively long GPU busy times
that utilize over 10% of system uptime. These machines are
primarily used for developing GPU applications. Worker #7
has the longest CPU busy time. The owner of this machine
primarily develops CPU applications.

With respect to the time scale shown in Fig. 5(b), worker
#1 has the longest uptime of 32 hours, while worker #4 has
the shortest uptime of 13 hours. In total, the system uptime is
180 hours, including 98 hours of idle time. Clearly, the eight
worker machine owners have different usage styles resulting
in different resource status. More details on task execution
statistics are presented in Section 8.3 of the supplementary
material.

Since the database is sent to workers before experiments,
communication time does not limit the alignment throughput
in the study. The execution time is 67 hours in total, which
includes kernel execution time of 64 hours and communication
time of 3 hours. Scalability and distribution issues should be
considered in future work.
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4.3 Degree of Interference
Our approach may cause greater interference to hosts than
previous screensaver-based approaches do. This additional in-
terference occurs (1) when the keyboard or mouse is operated
at intervals shorter than the screensaver timeout period while
having a CPU load of less than 10% and no consumption
of video memory, and (2) when an idle period is incorrectly
detected during a busy state (i.e., when a false negative
occurs).

The first case causes the delay of kernel termination when
moving from idle state to busy state. According to our in-
vestigation mentioned below, we found that document editing
and web browsing apply in this case. Thus, the interference
manifests as a short delay of around K = 100 milliseconds,
which occurs at the end of a rest period of more than W = 1
second.

The second case decreases frame rates due to guest task
execution. However, we could not observe a false negative
except the instant delay mentioned above. Thus, a significant
system slowdown is prevented during the case study. To assess
the worst case of interference, we measured the frame rate
while executing guest tasks. Figure 6 shows the frame rate
measured using Fraps [24] on the GTX 285 card. The frame
rate linearly increases as we decrease specified time K. In
particular, our modified kernel keeps the frame rate of 10.7
fps, whereas the original kernel drops the rate to 2.9 fps. A
similar behavior was observed on the 8800 GTX card (see Fig.
15 of the supplementary material). We therefore consider that
our rate is acceptable for office workers who edit text files at
10.7 characters per second at most, even though idle periods
are continuously detected on busy workers.
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Fig. 7. Comparison to previous systems in terms of alignment throughput. Results on (a) our FGCS system, (b)
screensaver-based system, and (c) cluster system. Presented results are sum of values estimated on 14 workers.

The interference also depends on the accuracy of idle period
detection, which is determined by the following three factors:
(1) the accuracy of event handlers, (2) the wait time W needed
to resume the idle state after event detection, and (3) the
accuracy of the idle status definition. Since event handlers
are originally designed for interactive GUI operations, we
conclude that they are accurate enough to deal with idle
periods measured in seconds. The wait time W of one second
can result in a false positive, because our system cannot detect
the first second of idle periods, as illustrated in Fig. 2. With
respect to the correctness of the idle status definition, we
investigated the resource status using various host scenarios
such as graphics rendering, video viewing, music playing,
virus scanning, I/O loading, and other types of CPU/GPU
computing. Our system detects the idle state during document
editing and web browsing. The system does not execute guest
kernels under the remaining scenarios, so that we could not
observe significant system slowdown.

From the point of view of quality of service, we consider
that the specified time K can be used to estimate the minimum
frame rate on workers. As mentioned in Section 3.5, time K
can be equivalent to the delay in updating the frame buffer.
Thus, the frame rate will be around 1/K. Although this does
not strictly guarantee the frame rate, we can roughly control
the minimum rate by specifying the value of K, as shown in
Fig. 6.

4.4 Comparison with Previous Systems
In this section, we compare our FGCS system with a
screensaver-based system [16] and a cluster system; our com-
parison focuses on alignment throughput. The screensaver-
based system requires five minutes of wait time to determine
that the resource actually is idle and has no interaction with
hosts. We regard the screensaver-based system as a coarse-
grained cycle sharing system, while we regard the cluster
system as a dedicated system. To compare these systems fairly,
we used logs obtained on 14 machines in our university. These
logs contain the start and end times of idle states detected
during 20 work days. Across all machines, the system uptime
is 1668 hours in total. The overall distribution of idle periods
is shown in Fig. 3.

Using these logs, we simulated the behavior of the three
systems to evaluate the throughput with varying lengths n of

query sequence. Our simulation assumes that (1) all workers
have a GTX 285 card, (2) it takes 0.17 seconds to send a
query sequence and receive computational results, (3) and
the screensaver-based and cluster systems execute the original
version [8] of the SW code.

To compute the throughput for each system, we counted
the number of successfully completed tasks. Figure 7 shows
simulation results for the three systems. Our FGCS system
detects 1011 hours of time, which is 2.1 times more than
that the 479 hours detected by the screensaver-based system.
This improved detection leads to two times more throughput
than the screensaver-based system. As an example, the FGCS
system achieves an alignment throughput of 64.0 GCUPS
when n = 255 (Fig. 7(a)), while the screensaver-based system
achieves that of 31.7 GCUPS (Fig. 7(b)). Again with n =
255, the FGCS system throughput is 58% of the throughput
achieved by the cluster system (Fig. 7(c)). Results indicate
that adding two graphics cards into a desktop machine in an
office environment is equivalent to adding a graphics card into
a computing node in a dedicated cluster. With respect to SW
alignment, we believe that a cluster of P GPUs can be built
by adding 2P GPUs into desktop machines ordinarily used
for office work.

Figure 7 also shows the number of successful and failed
tasks. As we increase length n from 64 to 1536, execution time
per task increases from 2.1 to 16.0 seconds. Because of this
increase in execution time, both the FGCS and screensaver-
based systems reduce the number of successful tasks; how-
ever, throughput remains steady approximately 65 GCUPS in
our system and 32 GCUPS in the screensaver-based system.
The cluster system achieves the maximum throughput for all
lengths n because it uses fully idle resources.

Note that the cluster system shows decreased throughput
when n ≤ 191. This lower throughput is consistent with de-
creases observed in the FGCS and screensaver-based systems.
As such, the throughput of such short query sequences is
determined by kernel performance rather than cycle sharing
overhead.

Thus, we conclude that our FGCS system efficiently ex-
ploits idle periods of less than five minutes, periods of time
that cannot be exploited in the screensaver-based system. In
contrast, the FGCS system fails to complete 155 times more
tasks than that of the screensaver-based system. This is due
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Fig. 8. Success rate of task execution with different
lengths (n) of query sequence.

to the power law distribution of idle period lengths, which we
mentioned in Section 3.3.

Figure 8 shows the success rate of task execution with
different lengths n of the query sequence. In the FGCS system,
the success rate decreases as we increase n, because the
execution time per task increases with n. We observe a success
rate of at least 75% if a task completes within three seconds.
Therefore, the efficiency of the system can be increased by
future GPUs, which will complete the same task within shorter
time. Since our system cancels task execution when workers
turn out to be busy, we can further increase the alignment
throughput by supporting a checkpoint restart capability that
resumes task execution from the last kernel invocation.

4.5 Scheduling Tradeoff
There is a tradeoff between the task granularity and the
task success rate. As we increase the task granularity, the
master increases the efficiency of master-worker execution
but produces more failed tasks. As we decrease the task
granularity, we can use more idle periods with a higher success
rate but the master can limit the entire performance. Thus,
it is important to find the best tradeoff point between the
guest throughput and the success rate. Since a lower success
rate involves more cancelled tasks, which in turn slow down
the master, finding the tradeoff point will play an important
role in increasing the efficiency of larger systems using our
model. Section 8.4 of the supplementary material gives further
analysis on this tradeoff issue.

4.6 Flexibility for Other Applications
Our FGCS approach requires changes to the guest application
to enable control of fine-grained tasks. In our approach, the
following three requirements must be satisfied in order to adapt
an application: (1) the application must run with the master-
worker execution model, (2) a performance model must be
constructed to estimate the kernel execution time k, and (3)
the application code must be rewritten such that the kernel can
efficiently complete within a short timeframe K. More details
regarding this flexibility issue are presented in Section 8.5 of
the supplementary material.

5 CONCLUSION
In this paper, we presented an FGCS system capable of
accelerating homology search using idle GPUs in an office en-
vironment. Our system exploits short idle periods on the order

of seconds, which are not captured via existing screensaver-
based systems. To achieve this, our system monitors keyboard
and mouse activities using event handlers and executes small
parts of tasks such that each part can be completed within
hundreds of milliseconds. Such an approach prevents hosts
from experiencing frequent system slowdown, allowing guest
applications to run with minimal host disruption.

We also presented a performance model that estimates
kernel execution time of the SW algorithm. This model is
useful for running guest tasks at the best tradeoff point
between throughput of guest applications and the delay of
host applications. The scheduling algorithm in our system
takes advantage of statistical analysis indicating that the idle
period length distribution follows a power law. According to
this analysis, our system assigns tasks to resources that have
been idle for long periods of time.

We performed experiments in our laboratory and have found
that half of the system uptime can be utilized in achieving
higher throughput for the SW algorithm. The simulation results
show that the FGCS system running on 14 GTX 285 cards
achieves a throughput of 64.0 GCUPS, which is equivalent
to 58% of the throughput achieved by the cluster system. We
believe that the GPUs hidden (and often unused) in office
environments provide a powerful solution to the problem
of homology search. We also believe that FGCS systems
will become a strong driving force to enhance the GPU
architecture.

Future work would include exploitation of short idle periods
of less than one second. We found that such idle periods
occupy approximately 25% of system uptime. We also plan to
develop a resume capability to increase the efficiency of task
execution when faced with the issue of workers cancelling a
task. We think that such a capability is useful to scale the
performance with the number of workers.
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