
Improving Cache Locality for

Ray Casting with CUDA∗

Yuki Sugimoto, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology

Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{y-sugimt,ino}@ist.osaka-u.ac.jp

Abstract: In this paper, we present an acceleration method for texture-based ray cast-
ing on the compute unified device architecture (CUDA) compatible graphics process-
ing unit (GPU). Since ray casting is a memory-intensive application, our method in-
creases the hit rate of the texture cache during rendering. To achieve this, our method
dynamically selects the width and height of thread blocks (TBs) such that each warp,
which is a series of 32 threads simultaneously processed on the GPU, can achieve high
data locality for specific viewpoints. The objective of this selection is to allow every
warp rather than every thread to access data with a small stride, because the GPU ex-
ecutes multiple threads at the same time. In experiments using a GeForce GTX 480
card (i.e., the latest Fermi architecture), we find that the speedup of our method ranges
from a factor of 1.0 to that of 4.0, depending on viewpoints. We think that optimizing
the shape of TBs is important to achieve more cache hits in the highly-threaded CUDA
hardware.

1 Introduction

Ray casting [Lev88] is a visualization technique for intuitive understanding of three-

dimensional (3-D) objects. For example, this technique is useful to analyze not only

computed tomography (CT) images in medical area [TIH03] but also simulation results

in computational fluid dynamics [NIH08]. In ray casting, the voxel values of the volume

are accumulated into pixel values on the screen. To do this, a ray is generated from the

viewpoint to each pixel, and then values of penetrated voxels are sampled at regular in-

tervals along the ray for accumulation. Thus, the accumulation is accomplished from 3-D

space to 2-D space. During this accumulation procedure, voxel values can be reused only

within neighboring region. Therefore, ray casting is a memory-intensive application rather

than a compute-intensive application.

To deal with this large amount of memory access, many renderers [NIH08, KW03, RV06]

were implemented using the graphics processing unit (GPU) [MM05], which is an ac-

∗This work was partly supported by JSPS Grant-in-Aid for Scientific Research (B)(23300007) and Young

Researchers (B)(23700057)

339

339



celerator for graphics applications. The memory bandwidth of the GPU is an order of

magnitude higher than that of the CPU. Furthermore, this architecture is capable of run-

ning thousands of lightweight threads in parallel, which are useful to hide memory latency

with data-independent computation. Using this accelerator, the accumulation procedure

can be easily parallelized because there is no data dependence between different rays (i.e.,

different pixels). The volume data is typically loaded as a 3-D texture to interpolate voxel

values using texture mapping hardware of the GPU. This hardware has a cache mecha-

nism to reduce the latency of data access for acceleration. Consequently, the rendering

performance can be increased by maximizing the locality of references.

In this paper, we present a view-dependent method for increasing the hit rate of the tex-

ture cache, aiming at accelerating texture-based ray casting [HS89]. To achieve this, our

method maximizes the data locality by dynamically selecting the width and height of TBs

according to the geometrical relationship between the viewpoint and the volume axes. The

shape of TBs is selected such that a group of threads called warp [NVI10] can access data

with a small stride. Since threads in the same warp are simultaneously processed on the

GPU, such parallel threads have to maximize the locality of references. Our method cur-

rently works with the compute unified device architecture (CUDA) [NVI10], which is a

programming framework for the NVIDIA GPU.

2 GPU-based Volume Rendering

2.1 Compute Unified Device Architecture (CUDA)

The CUDA-compatible hardware [NVI10] consists of hundreds of CUDA cores structured

in a hierarchy. The hardware has tens of streaming multiprocessors (SMs), each containing

8 or 32 CUDA cores depending on the generation. Using these cores, thousands of threads

are executed in a single-instruction, multiple-thread (SIMT) fashion [NVI10]. This highly-

threaded architecture is designed to overlap memory latency with computation.

To achieve efficient overlap, threads are classified into data independent groups, namely

thread blocks (TBs). Therefore, more TBs should be resided and processed together on the

SM. Since there is no data dependence between TBs, such concurrent TBs contribute to

have more flexibility for efficient scheduling of threads. Each resident TB is further broken

into groups of 32 consecutive threads called warps. A warp is the minimum scheduling

unit managed by the SM.

Threads can be identified using a 2-D index, forming a 2-D TB. The TB shape w × h,

where w and h be the width and the height of TBs, respectively, can be specified by an

argument to the kernel function, which runs on the GPU. On the other hand, the warp

shape p× q cannot be directly specified by the program, where p and q represent the width

and the height of warps, respectively. Since threads in a warp have consecutive indexes,

the warp shape is automatically determined by the TB shape. The execution order of

warps is dynamically determined by the warp scheduler, which cannot be controlled by

the program.

340

340



Viewpoint O

VolumeV

RayR

e1e2
en

W

H

(u,v)

x

y

z

N

N

N

Figure 1: Geometry of ray casting. Pixel values are computed by accumulating color and opacity
values of voxels penetrated by a ray from the viewpoint.

2.2 Ray Casting

Figure 1 illustrates the geometry used for ray casting [Lev88]. Let V be the volume to be

rendered from the viewpoint O. We consider a cubic volume of N ×N ×N voxels, where

N represents the volume size. We assume that each voxel has a scalar data associated with

color and opacity values. Let x, y, and z be elements of the voxel coordinates.

The ray casting technique casts a ray R from the viewpoint O to every pixel (u, v) on the

screen S, where 1 ≤ u ≤ W and 1 ≤ v ≤ H . W and H here represent the width and the

height of the screen S. Ray R penetrates voxels in the volume, so that the value S(u, v) of

pixel (u, v) is computed by accumulating color and opacity values of penetrated voxels in

front-to-back order. This accumulation is done at regular intervals along ray R as follows:

S(u, v) =
n�

i=1



α(ei)c(ei)
i−1�

j=0

(1 − α(ej))



 , (1)

where ei represents the i-th voxel penetrated by ray R, n represents the number of pene-

trated voxels, c(ei) and α(ei) represent the color and the opacity of voxel ei, respectively,

and α(e0) = 0.

2.3 Texture-based Rendering with CUDA

Eq. (1) indicates that different pixel values can be computed in parallel because there is

no data dependence between them. Consequently, the computation of a pixel is assigned

to a thread in typical renderers. A screen of W × H pixels can then be rendered by WH

threads, which compose ⌈W/w⌉ × ⌈H/h⌉ TBs. Using this parallel scheme, voxels are

accessed in front-to-back order.

Since rays do not always penetrate the center of voxels, voxel values must be interpo-

341

341



Figure 2: Organization of a 3-D texture in CUDA. A 3-D texture consists of a bunch of 2-D slices
optimized for 2-D spatial locality via a z-order curve [Mor66]. A series of red arrows represents the
sequence of physical memory address in a 2-D slice. The physical address is shown in each texel’s
upper left corner.

lated before accumulation. To accelerate this interpolation, many implementations em-

ploy texture-based rendering [HS89], which performs interpolation using texture mapping

hardware of the GPU. Thus, the volume is accessed via a 3-D texture to take advantage of

hardware accelerated interpolation.

3 Texture Memory Organization

Figure 2 shows how the GPU maps a logical address space onto a physical memory space

in a 3-D texture [MM05, PF05]. As shown in this figure, a 3-D texture consists of a bunch

of 2-D slices. Each slice is further optimized for 2-D spatial locality via a z-order curve

[Mor66], as illustrated in a sequence of red arrows in Fig. 2. The z-order curve has a

recursive hierarchy, so that a z-ordered block at the l-th level of hierarchy contains a 2-D

slice of 2l × 2l texels, where 1 ≤ l ≤ ⌈log N⌉ (see Fig. 3). For simplicity, we assume N

being a power of two (i.e., N = 2l) in the following discussion.

Although the z-order curve is optimized for 2-D spatial locality, the physical stride be-

tween two adjacent voxels is not uniform in this data structure. To investigate this issue in

more detail, let us consider accessing two adjacent voxels ei and ei+1. The stride between

these voxels can then be classified into two groups depending on their coordinates:

1. The adjacent voxels have different z. In this case, voxels ei and ei+1 exist on two

adjacent slices. These voxels can be accessed with a stride of N2, because they have

the same x and y.

2. The adjacent voxels have different y or x. In these cases, voxels ei and ei+1 exist

342

342



level l-1 level l

00

4 l-1-1

2 l-1

2 l-1

2 l

2 l

a b

c

d

Figure 3: Hierarchical structure of a z-order curve. A block at the l-th level contains four internal
blocks of the (l − 1)-th level. The maximum stride appears between these internal blocks: between
texels a and b along the horizontal axis, and between texels c and d along the vertical axis. The
physical index of texels b and d are 4l−1 and 2 · 4l−1, respectively. The physical index of texels a

and c are
�

l−2

k=0
4k and 2 ·

�
l−2

k=0
4k, respectively.

on the same slice. The stride between them varies according to their location on

the slice. For example, the strides along the x-axis range from 1 to 11 in Fig. 2.

However, the maximum stride at the l-th level of hierarchy appears between adjacent

blocks of the (l − 1)-th level, as shown in Fig. 3. The maximum stride along the

x-axis can be given by (2 · 4l−1 + 1)/6 while that along the y-axis can be given

by (2 · 4l−1 + 1)/3. Since N = 2l, voxels along the x-axis and the y-axis can be

accessed with a stride of (N2 + 2)/6 and that of (N2 + 2)/3, respectively.

In summary, the x-axis, y-axis, and z-axis have a different stride between adjacent voxels,

and their ratio can be approximated by 1 : 2 : 6. Therefore, it is better to access voxels

along the x-axis in order to achieve more cache hits.

4 Proposed Method

In this section, we describe our acceleration method that selects the TB shape w×h during

rendering. We first explain our acceleration strategy, and then present how our method

selects the TB shape according to the strategy.

4.1 Acceleration Strategy

As we mentioned in Section 1, our method maximizes the locality of references. To

achieve this, we focus on four points as follows:

1. The SM processes threads in the same warp at the same time.

2. Each volume axis has a different stride between adjacent voxels.

343

343



3. The TB shape w × h determines the warp shape p × q. For details, see [NVI10].

4. The number of resident TBs should be maximized to take advantage of the highly-

threaded GPU architecture.

The first point motivates us to optimize the memory access pattern of a warp rather than

that of a thread. This point is a unique feature owing to the highly-threaded GPU architec-

ture. On earlier acceleration systems such as cluster systems [TIH03, MIH04], optimiza-

tion is successfully done for a single process (i.e., a single ray). In contrast, we emphasize

optimization of a warp (i.e., a ray frustum) as a key acceleration strategy for the GPU.

Thus, we must investigate the memory access pattern that can be caused by a warp. Since

voxels are sampled at regular intervals from the viewpoint, a warp accesses voxels on the

surface of a sphere. For simplicity, we assume that this spherical surface can be approxi-

mated with a plane. Under this approximation, a warp accesses voxels on a plane that are

parallel to the screen.

With respect to the second point, voxels should be always accessed along the x-axis, which

has the smallest stride among the volume axes. However, this is not a practical solution

because the volume can be rendered from an arbitrary viewpoint. For example, the x-axis

can be rendered as a vertical line on the screen, but it can appear as a horizontal line with

a different viewpoint. Thus, the volume axes have different appearance on the screen,

depending on the location of the viewpoint (see Fig. 4). Therefore, we have determined to

give priority to the volume axes: voxels should be accessed in the order of x, y, and z to

have smaller strides. Clearly, this priority should be implemented as per-warp order instead

of per-thread order. Therefore, we optimize the warp shape to realize the prioritization.

The third point plays the key role in realizing the prioritized access mentioned above. As

we mentioned in Section 2.1, the warp shape p × q is determined by the TB shape w × h.

Table 1 shows their relationship when using the TB size wh of 128. This table indicates

that horizontal warps (i.e., p > q) are generated if w ≥ 8. Otherwise, vertical warps (i.e.,

p < q) are generated. The warp size p× q must be selected such that each warp can access

voxels in the order of x, y, and z. For example, vertical warps are better than horizontal

warps if the x-axis appears as a vertical line on the screen. In this case, vertical warps are

allowed to access voxels with smaller strides than horizontal warps.

The last point determines the size wh of TBs. As we mentioned in Section 2.1, the number

of resident TBs should be maximized to efficiently hide memory latency with computation.

Due to the limitation of available resources, up to 8 TBs can be processed on the SM at

a time [NVI10]. Similarly, up to 1536 threads can be resident on the SM. Therefore, the

TB size wh must be wh ≤ 192 to maximize resident TBs on the SM. In addition, the TB

size wh must be a multiple of the warp size (i.e., 32) to avoid cores from being idle during

SIMT execution. Since the number of resident TB depends on the amount of resource

consumption, we compiled our rendering kernel with wh = 192, 160, and so on. We then

found that wh = 128 is the maximum TB size that can run 8 TBs on the SM. Thus, our

kernel runs with wh = 128.

344

344



Table 1: Relationship between TB shape w × h and warp shape p × q. Values are presented for the
TB size wh of 128. Horizontal warps (i.e., p > q) are generated if w ≥ 8. Otherwise, vertical warps
are generated.

TB shape w × h Warp shape p × q Aspect ratio of warp

1 × 128 1 × 32 1 : 32

2 × 64 2 × 16 1 : 8

4 × 32 4 × 8 1 : 2

8 × 16 8 × 4 2 : 1

16 × 8 16 × 2 8 : 1

32 × 4 32 × 1 32 : 1

64 × 2 32 × 1 32 : 1

128 × 1 32 × 1 32 : 1

(a) (b) (c) (d) (e) (f)

Figure 4: Geometrical relationship between the viewpoint and the volume axes. Each of subfigures
(a)–(f) corresponds to one of six representative viewpoints. In these viewpoints, the x-axis can be
parallel to one of the horizontal, the vertical, and the depth directions. The x-axis and the z-axis
have the smallest stride and the largest stride among the volume axes, respectively.

4.2 Selection of Thread Block Shape

Our method selects the TB shape w×h according to the geometrical relationship between

the viewpoint and the volume axes. For simplicity, we consider here six representative

viewpoints, which make two of the volume axes parallel to the screen axes. Figure 4

shows six images rendered with the representative viewpoints. Given the viewpoint O, the

TB shape is selected in the following three steps:

1. Plane detection. Our method detects the plane most parallel to the screen. For

example, the xy-plane is such a parallel plane in Figs. 4(a) and 4(e). According

to our approximation, voxels on a parallel plane are simultaneously accessed by a

warp.

2. Primary axis detection. The primary axis with a smaller stride is selected from two

axes that create the parallel plane. For example, the yz-plane is the parallel plane in

Figs. 4(c) and 4(f), so that the y-axis is selected as the primary axis.

3. TB shape selection. The TB shape is selected according to the direction of the

primary axis rendered on the screen. Vertical and horizontal warps are selected if

345

345



the primary axis is rendered in a vertical line and in a horizontal line on the screen,

respectively. Our method currently uses the TB shape of w × h = 32 × 4 for

horizontal warps and that of 1 × 128 for vertical warps. For example, the TB shape

of 32×4 is selected for viewpoints in Figs. 4(a), 4(b), and 4(c), because the primary

axis is rendered in a horizontal line from these viewpoints.

5 Experimental Results

To evaluate our method in terms of the rendering performance, we measured the frame

rate and the hit rate of the texture cache. For experiments, we used a desktop PC equipped

with a GeForce 480 GTX card. Our machine runs with Windows 7, CUDA 3.2 [NVI10],

and graphics driver 260.61. The cache hit rate was measured by CUDA Visual Profiler.

As a rendering implementation, we used a sample code distributed with CUDA SDK.

This code originally uses a texture to refer a color map table, which associates color and

opacity values with each voxel. Since references to this table results in perturbation of

cache behavior, we modified the code such that it stores the table in shared memory. Thus,

the modified code uses textures only for the volume data. We used N = W = H = 1024
for performance evaluation. The volume consists of 8-bit data.

The volume data was rendered using six viewpoints (a)–(f) presented in Fig. 4. Note that

these viewpoints are in symmetric positions. We used symmetric viewpoints, because

threads are allowed to have the same workload despite the difference of viewpoints. That

is, the same number of voxels is accessed for each viewpoint, but with a different order.

This is necessary to avoid misunderstandings caused by asymmetric viewpoints, which

assign different workloads to threads. Due to the same reason, optimization techniques

such as early ray termination and empty space skipping [Lev90] are not used during ex-

periments.

Figure 5 shows the frame rates of our dynamic method and a static method. The static

method uses a fixed shape w×h = 16×16 (i.e., p× q = 16×2) for arbitrary viewpoints.

For viewpoints (b), (d), (e), and (f), our method achieves higher frame rates than the static

method. The speedup over the static method reaches 1.1, 4.0, 1.3, and 1.5 for viewpoints

(b), (d), (e), and (f), respectively. In particular, the frame rate for viewpoint (d) increases

from 11.6 to 46.6 fps, with increasing the cache hit rate from 51.2% to 73.9%. On the

contrary, there is no significant difference for viewpoints (a) and (c). This is due to the

warp shape used in the static method. For these viewpoints, the static method generates

horizontal warps, as our method does. Therefore, our method cannot increase the cache

hit rate for these viewpoints.

Figure 6 explains how the cache hit rate determines the frame rate. We measured both

rates using eight different TB shapes, ranging from w × h = 1 × 128 to 128 × 1. Each

frame rate is the average of ten trials. As shown in Fig. 6, higher frame rates are obtained

when higher cache hit rates are achieved. For instance, the highest frame rate of 50.8 fps

is observed when the cache hit rate reaches 73.8%. In contrast, the lowest frame rate of

5.2 fps results in a cache hit rate of 4.2%. Thus, the frame rate is mainly determined by

346

346



0

10

20

30

40

50

60

(a) (b) (c) (d) (e) (f)

F
r
a
m
e
r
a
te
(f
p
s)

Viewpoint

Static method

Our dynamic method

Figure 5: Comparison of frame rates between our dynamic method and the static method. The former
uses the TB shape w × h = 32 × 4 for viewpoints (a)–(c) and w × h = 1 × 128 for viewpoints
(d)–(f). The latter uses the default shape w × h = 16 × 16 for arbitrary viewpoints.

the cache hit rate.

Another important behavior in Fig. 6 is that all of the eight TB shapes have a wide range

of cache hit rates ranging approximately from 5% to 80%. This behavior indicates that

a single shape of TBs is not sufficient to obtain higher cache hit rates for all viewpoints.

Therefore, it is better to change the TB shape according to the location of the viewpoint,

as we do in our method.

We next investigate the relationship between the TB shape and the frame rate. Figure 7

shows frame rates with different TB shapes, ranging from w×h = 1×128 to 128×1. The

results are classified into two groups: (1) viewpoints (a)–(c), which have smaller strides

for horizontal warps; and (2) viewpoints (d)–(f), which have smaller strides for vertical

warps. As we mentioned in Section 4.1, the warp size varies from p × q = 1 × 32 to

32 × 1, according to the TB shape w × h (see Table 1). Recall that horizontal warps are

generated if w ≥ 8.

Figure 7(a) indicates that horizontal warps rather than vertical warps yield high frame

rates. In contrast, Fig. 7(b) shows that vertical warps achieve higher frame rates than

horizontal warps. Actually, these figures are in a symmetric relation. A vertical symmetry

axis exists between w × h = 4 × 32 and 8 × 16 (i.e., between p × q = 4 × 8 and 8 × 4).

For example, viewpoints (b) and (d) have a cross point on the vertical symmetry axis, and

both have the xz-plane as a parallel plane. Therefore, it is better to change the TB shape

at the symmetry axis, which determines the warp shape to be vertical or horizontal. This

dynamic optimization is exactly what our method implements.

Although our method optimizes the TB shape, the frame rates for viewpoints (c) and (f)

result in lower values. When these viewpoints are used, the x-axis is parallel to the depth

direction, as shown in Figs. 4(c) and 4(f). Therefore, voxels are always accessed with a

large stride, which decreases the cache hit rate to at most 33.1%, as shown in Fig. 6. These

results also imply that the capacity of the texture cache is not large enough to deal with

N = 1024. Actually, the cache hit rate ranges from 33.2% to 69.2% if a smaller volume

of N = 512 is rendered with viewpoints (c) and (f).

347

347



0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(a) 1 × 128

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(b) 2 × 64

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(c) 4 × 32

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(d) 8 × 16

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(e) 16 × 8

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(f) 32 × 4

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(g) 64 × 2

0

10

20

30

40

50

60

0

20

40

60

80

100

(a) (b) (c) (d) (e) (f)

F
ra
m
e
ra
te
(f
p
s)

C
a
ch
e
h
it
ra
te
(%
)

Viewpoint

Cache hit rate

Frame rate

(h) 128 × 1

Figure 6: The frame rate and the cache hit rate with different TB shapes ranging from w × h =
1 × 128 to 128 × 1. Each subfigure contains results for six viewpoints shown in Fig. 4(a)–(f).

6 Related Work

Krüger et al. [KW03] presented the impact of optimization techniques such as early ray

termination and empty space skipping [Lev90] on the GPU. Using these techniques, the

348

348



0

10

20

30

40

50

60

1×128 2×64 4×32 8×16 16×8 32×4 64×2 128×1

F
r
a
m
e
r
a
te
(f
p
s)

TB shape w×h

Viewpoint (a)

Viewpoint (b)

Viewpoint (c)

(a)

0

10

20

30

40

50

60

1×128 2×64 4×32 8×16 16×8 32×4 64×2 128×1

F
r
a
m
e
r
a
te
(f
p
s)

TB shape w×h

Viewpoint (d)

Viewpoint (e)

Viewpoint (f)

(b)

Figure 7: Frame rates with different shapes of TBs. (a) Results for three viewpoints (a)–(c), which
are efficient with horizontal warps. (b) Results for the remaining viewpoints (d)–(f), which are
efficient with vertical warps.

rendering performance is increased by a factor of 3. These techniques intend to reduce the

amount of data access while our optimization strategy reduces the latency of data access.

A similar technique is presented by Rijters et al. [RV06], who employ an octree data

structure on the GPU.

An optimization strategy is presented by Ryoo et al. [RRS+08] for CUDA applications.

Their strategy investigates the number of resident TBs to evaluate resource utilization. The

TB size wh is optimized using this metric but the TB shape w × h is not investigated for

further optimization.

Liu et al. [LZS09] presented an optimization framework capable of empirically searching

for the best optimizations for GPU applications. Using their framework, we can easily find

the best shape of TBs in terms of the performance. In contrast to this empirical approach,

our approach gives insight into the relationship between the data locality and the memory

access pattern. According to our insight, we can prune the search space in terms of the TB

shape, which contributes to reduce the overhead of run-time optimization.

7 Conclusion

In this paper, we presented an acceleration method for texture-based ray casting on the

CUDA-enabled GPU. Our method increases the hit rate of the texture cache by selecting

the shape of TBs during rendering. This selection focuses on the geometrical relationship

between the viewpoint and the volume axes. Our method determines the TB shape such

that threads in the same warp can have a small stride of memory access. Such a small stride

can be obtained if each warp accesses consecutive voxels along the x-axis. In experiments,

we investigated the cache hit rate and the frame rate using six viewpoints. We found

that our method increases the cache hit rate by approximately 20%. This higher locality

achieves a frame rate of 46.6 fps, which is four times higher than that of a naive method

349

349



that uses TBs of a fixed shape. Future work includes further evaluation using other GPU

architectures that are compatible with OpenCL.

References

[HS89] William Hibbard and David Santek. Interactivity is the Key. In Proc. Chapel Hill Work-
shop Volume Visualization (VVS ’89), pages 39–43, May 1989.

[KW03] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based Volume Render-
ing. In Proc. 14th IEEE Visualization Conf. (VIS’03), pages 287–292, October 2003.

[Lev88] Marc Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics and
Applications, 8(3):29–37, May 1988.

[Lev90] Marc Levoy. Efficient Ray Tracing of Volume Data. ACM Trans. Graphics, 9(3):245–261,
July 1990.

[LZS09] Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A Cross-Input Adaptive Framework for
GPU Program Optimizations. In Proc. 23th IEEE Int’l Parallel and Distributed Processing
Symp. (IPDPS’09), May 2009. 10 pages (CD-ROM).

[MIH04] Manabu Matsui, Fumihiko Ino, and Kenichi Hagihara. Parallel Volume Rendering with
Early Ray Termination for Visualizing Large-Scale Datasets. In Proc. 2nd Int’l Symp. Par-
allel and Distributed Processing and Applications (ISPA’04), pages 245–256, December
2004.

[MM05] John Montrym and Henry Moreton. The GeForce 6800. IEEE Micro, 25(2):41–51, March
2005.

[Mor66] G. M. Morton. A Computer Oriented Geodetic Data Base and a New Technique in File
Sequencing. Technical report, IBM Ltd, Ottawa, Ontario, August 1966.

[NIH08] Daisuke Nagayasu, Fumihiko Ino, and Kenichi Hagihara. A Decompression Pipeline
for Accelerating Out-of-Core Volume Rendering of Time-Varying Data. Computers and
Graphics, 32(3):350–362, June 2008.

[NVI10] NVIDIA Corporation. CUDA Programming Guide Version 3.2, September 2010.

[PF05] Matt Pharr and Randima Fernando, editors. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation. Addison-Wesley,
Reading, MA, March 2005.

[RRS+08] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, John A. Stratton, Sain-Zee Ueng,
Sara S. Baghsorkhi, and Wen mei W. Hwu. Program optimization carving for GPU com-
puting. J. Parallel and Distributed Computing, 68(10):1389–1401, October 2008.

[RV06] Daniel Rijters and Anna Vilanova. Optimizing GPU Volume Rendering. J. WSCG,
14(1/3):9–16, January 2006.

[TIH03] Akira Takeuchi, Fumihiko Ino, and Kenichi Hagihara. An Improved Binary-Swap Com-
positing for Sort-Last Parallel Rendering on Distributed Memory Multiprocessors. Paral-
lel Computing, 29(11/12):1745–1762, November 2003.

350

350




