
Accelerating Parameter Sweep Applications Using CUDA

Masaya Motokubota, Fumihiko Ino and Kenichi Hagihara
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Email: {m-motkbt,ino}@ist.osaka-u.ac.jp

Abstract—This paper proposes a parallelization scheme
for parameter sweep (PS) applications using the compute
unified device architecture (CUDA). Our scheme focuses on
PS applications with irregular access patterns, which usually
result in lower performance on the GPU. The key idea to
resolve this irregularity is to exploit the similarity of data
accesses between different parameters. That is, the scheme
simultaneously processes multiple parameters instead of a
single parameter. This simultaneous sweep allows data accesses
to be coalesced into a single access if the irregularity appears
similarly at every parameter. It also reduces the amount of
off-chip memory access by using fast on-chip memory for the
data commonly accessed for multiple parameters. As a result,
the scheme achieves up to 4.5 times higher performance than
a naive scheme that processes a single parameter by a kernel
invocation.

Keywords-parameter sweep; acceleration; GPU; CUDA;

I. INTRODUCTION

The parameter sweep (PS) is a well-known strategy for
solving combinational optimization problems in parallel.
For example, PS applications typically apply the same
operations to different parameters in order to find the best
parameter from the parametric space. Since the number of
combinations is usually enormous, many researchers are
trying to accelerate PS applications using high-performance
computing systems. For example, grid systems provide us
a powerful solution with a distributed computing envi-
ronment [1]. Such systems typically exploit the coarse-
grained parallelism inherent in the PS computation because
different parameters usually do not have data dependence
between their computations. Therefore, parallelization can
be efficiently achieved by a master-worker scheme, which
simply assigns a set of independent parameters to computing
nodes in a round-robin fashion. Thus, the PS application is
one of the killer applications for grid systems.

One remarkable feature of recent grid systems is that the
graphics processing unit (GPU) [2], [3] is emerging as a
powerful accelerator not only for graphics applications but
also for general, non-graphics applications. For example,
the Folding@home project [4] accelerates simulations of
protein folding and other molecular dynamics using more
than 15,000 GPUs. Their simulator is implemented using
the computer unified device architecture (CUDA) [5], which
is a development framework for the NVIDIA GPU [2]. In

their system, the GPU provides 60% of the entire throughput
though it accounts only for 5% of all available resources,
including the CPU and the Cell Broadband Engine. Thus,
the GPU is increasing their contribution to the grid system
performance. Therefore, we need a general parallelization
scheme to efficiently run PS applications on the GPU.

In this paper, we propose a parallelization scheme for
accelerating PS applications on the CUDA-compatible GPU,
aiming at enhancing grid systems with GPU-based accel-
eration. Similar to the master-worker scheme, we focus
on the data parallelism in the PS computation. The main
difference to this previous scheme is that the proposed
scheme simultaneously processes multiple parameters as a
fine-grained task on the GPU. Such a multiple sweep allows
the GPU to access data in a coalesced manner [5], which
is useful to maximize the effective bandwidth of off-chip
video memory. In particular, our scheme will efficiently run
if each parameter has irregular access patterns but with a
similar behavior between different parameters. Furthermore,
we can save the bandwidth of video memory by using on-
chip memory for the common data that can be accessed for
multiple parameters.

The remainder of the paper is structured as follows.
Section II introduces related work. Section III presents
preliminaries including an overview of CUDA and a com-
putational model of PS applications. Section IV describes
our scheme and then Section V shows some experimental
results. Finally, Section VI concludes the paper.

II. RELATED WORK

To the best of our knowledge, there is no work that aims
at providing a general framework for accelerating PS ap-
plications on the GPU. However, some specific applications
are successfully accelerated on the GPU. For example, Liu
et al. [6] present a GPU-based method that implements a
biological alignment algorithm. Their method parallelizes
the algorithm by processing multiple pairs of data at a time,
which is similar to our parallelization scheme. Since their
work is done using the OpenGL graphics library, which
differs from the CUDA in terms of programming model and
architecture, it is not clear whether the scheme is useful for
CUDA-compatible GPUs and for general applications.

2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing

1066-6192/11 $26.00 © 2011 IEEE

DOI 10.1109/PDP.2011.19

111

In contrast, there are many projects that support parameter
study on CPU-based grid systems. For example, Condor
[7] is one of the first grid middleware that focuses on
idle machines for acceleration of scientific applications. It
provides a software framework [8] that allows users to easily
parallelize applications using the master-worker paradigm
on the grid. The AppLeS parameter sweep template (APST)
[9] is also a grid middleware designed to efficiently and
adaptively use resources managed by multiple grid environ-
ments. Our scheme can be integrated into these previous
systems because there is no overlap between their CPU-
related achievements and our GPU-related contribution.

With respect to optimization strategies for the GPU, Ryoo
et al. [10] propose an optimization procedure called program
optimization carving. Their procedure is designed to reduce
the optimization search space. According to the procedure,
we can easily find the best configuration parameters such as
the thread block size and the loop unroll factor. In contrast,
our scheme tackles the problem of memory coalescing. We
demonstrate that memory coalescing can be achieved more
easily if there are many parameters that can be processed at
the same time.

III. PRELIMINARIES

This section presents preliminaries needed to understand
our parallelization scheme.

A. Compute Unified Device Architecture (CUDA)

The CUDA [5] is a development framework for writing
and running parallel applications on the NVIDIA GPU.
Using this framework, parallel applications can be written
in the C-like language. As shown in Fig. 1, we can regard
the GPU as hierarchical multiprocessors (MPs), where each
MP has streaming processors (SPs) capable of processing
single instruction, multiple data (SIMD) computation with
millions of threads.

In the CUDA framework, the GPU program is imple-
mented as a kernel function, which will be called from
the CPU program. Since the GPU is based on the SIMD
architecture, every thread processes an instance of the same
kernel. Similar to the hardware architecture, threads have
a hierarchical organization, where they are grouped into
thread blocks (TBs) such that different TBs do not have data
dependence between themselves. TBs are then assigned to
one of MPs for SIMD execution on SPs. Note here that it is
important to reduce per-thread resource consumption. This
reduction will lead to have more active TBs on MPs because
TBs are assigned to MPs as far as there are resources. Such
multiple assignments allow MPs to switch active TBs to
overlap the memory access latency with data-independent
computation for another TB.

As shown in Fig. 1, the CUDA-compatible GPU has
two different physical memories: on-chip memory and off-
chip memory. The former contains shared memory and

SP SP SP SP

SP SP SP SP

Shared memory

MP (Multiprocessor)

…

GPU

Off-chip device memory

Global memory

Texture memory

Constant memory

SP SP SP SP

SP SP SP SP

Shared memory

MP (Multiprocessor)

SP SP SP SP

SP SP SP SP

Shared memory

MP (Multiprocessor)

Figure 1. Structure of the CUDA-compatible GPU. SP denotes streaming
processor.

register files while the latter includes global memory, texture
memory and constant memory. Shared memory has the same
latency (4 clocks) as registers if bank conflicts [5] are not
occurred during memory access. Since each MP has its own
on-chip memory, shared memory can be used to exchange
data between threads in the same TB. In other words, such
data exchanges are not available for threads in different TBs
because they can be assigned to different MPs.

On the other hand, off-chip memory has 400 clocks
of latency. To deal with this high latency issue, memory
transactions to global memory can be coalesced into a single
transaction if a series of 16 threads, called a half warp,
accesses the same segment on global memory [5]. Such
coalesced accesses will increase the effective bandwidth of
off-chip memory because the memory latency is associated
with a memory transaction. Constant and texture memory
resolve the latency problem by a cache but they are not
writable from the GPU.

Summarizing the above discussion, memory-bound ap-
plications can be efficiently accelerated according to the
following guidelines.

1) Hiding global memory latency by memory access
coalescing.

2) Reducing off-chip memory access by on-chip shared
memory.

3) Running more threads concurrently on each MP by
saving per-thread resource consumption.

B. Parameter Sweep Model

Let n be the number of parameters to be swept. To
simplify the description, our model assumes that every pa-
rameter Pk requires a single set Ik of input data to generate
a single set Ok of output data, where 1 ≤ k ≤ n. Despite of
this assumption, our design scheme can be easily extended
to deal with multiple sets. The model also assumes that each
set has the same number m of elements: |Ik| = |Ok| = m.
The input data set and the output data set then can be given

112

Input

Output

Kernel

Input

Output

Kernel

Input

Output

Kernel

Time

(a)

v inputs

v outputs

Kernel

Time

v inputs

v outputs

Kernel

v inputs

v outputs

Kernel

(b)

Figure 2. Parallelization schemes for PS applications. (a) A kernel invocation in a naive scheme is responsible for a single parameter while (b) that in the
proposed scheme is responsible for multiple parameters. Notation v denotes the number of parameters processed at the same time (v = 3, in this example).

by

Ik = { ek,s | 1 ≤ s ≤ m }, (1)
Ok = { fk,t | 1 ≤ t ≤ m }, (2)

where 1 ≤ k ≤ n, and ek,s and fk,t represent an element
of the input set and that of the output set, respectively. For
example, Ik and Ok correspond to the k-th input and output
images in image processing applications, respectively, while
ek,s and fk,t correspond to pixels in the images. Using the
representation mentioned above, the subset D of input data
commonly accessed for all parameters can be written as

D =
∩

1≤k≤n

Ik. (3)

Let Tk denote the task associated with parameter Pk,
where 1 ≤ k ≤ n. Since there is no data dependence be-
tween different tasks, the master-worker scheme organizes a
set of arbitrary tasks to exploit the coarse-grained parallelism
on distributed systems.

IV. PROPOSED SCHEME

The proposed scheme focuses on the following two char-
acteristics of PS applications.

• The same operations are processed for every parameter
Pk, where 1 ≤ k ≤ n.

• Different parameters can commonly access the same
subset D of input data.

According to the characteristics mentioned above,
our scheme simultaneously processes multiple tasks
Tk, Tk+1, . . . , Tk+v−1, where v represents the number of
parameters processed by a kernel invocation (see Fig.
2(b)). We currently use the size of a half-warp (v = 16)
for the GT200 architecture in order to coalesce memory
transactions. The details will be presented later.

Figure 3 illustrates an overview of our scheme. The
scheme requires reorganization of input/output data before
and after kernel invocation in order to achieve coalesced

CPU GPU

Raw input

Interleaved input

Interleaved output

1. Input data

reorganization

2. Download

3. Kernel execution

4. Readback

Raw output

5. Output data

reorganization

Interleaved input

Interleaved output

Figure 3. Overview of the proposed scheme. Our scheme involves
data reorganization before and after kernel invocation to store data in an
interleaved manner.

access on the GPU. Furthermore, it takes longer time to
execute a single kernel because the kernel processes multiple
parameters instead of a single parameter. However, this
increased time is a trivial problem if there is a large number
n of parameters to be swept. Thus, the total number of kernel
invocations is decreased by a factor of v in our scheme.

A. Hiding Global Memory Latency

As shown in Fig. 4, the key idea for acceleration is to re-
organize the input/output data Ik and Ok such that memory
transactions can be coalesced into a single transaction. We
think that this reorganization can improve the kernel perfor-
mance especially if each parameter has irregular accesses
but with similar irregularity between different parameters.
Such irregular accesses prevent us from coalescing memory
transactions, usually resulting in lower performance in the
previous scheme. Thus, we think that the SIMD nature of
PS applications makes it easier to achieve coalesced access

113

Step 1

0 1 2 0 1 2 0 1 2

k
I

1+kI 2+kI

0 1 2 0 1 2 0 1 2

k
I

1+kI 2+kI

0 1 2 0 1 2 0 1 2

k
I

1+kI 2+kI

Step 2

Step 3

k
T 1+kT 2+kT

(a)

0 0 0 1 1 1 2 2 2

k
T 1+kT

2...
+kk
II

0 0 0 1 1 1 2 2 2

2...
+kk
II

0 0 0 1 1 1 2 2 2

2,...
+kk
II

2+kT

(b)

Figure 4. Data reorganization in the proposed scheme. Array elements with circles are accessed at each step. (a) Each parameter has irregular accesses
that cannot be coalesced into a single transaction if data is not stored in an interleaved manner. After reorganization, (b) such accesses can be coalesced
if the irregularity appears similarly at every parameter.

Grid
TB TB

k
T 1+kT 2+kT

Thread

TB

(a)

Grid
TB TB

k
T 1+kT 2+kT

Thread

TB

(b)

Figure 5. Task assignment. (a) Each TB in a naive scheme is responsible for a single task. In contrast, (b) each TB in our scheme is responsible for
multiple tasks.

for multiple parameters rather than for a single parameter.
With respect to the GT200 architecture, memory coa-

lescing can be achieved if the PS application satisfies the
following conditions.

1) Threads in a half-warp are responsible for v different
tasks Tk, Tk+1, . . . , Tk+v−1.

2) Input and output data required for tasks
Tk, Tk+1, . . . , Tk+v−1 is stored in an interleaved
manner.

In order to satisfy condition 1), every TB in our scheme is
responsible for v consecutive tasks Tk, Tk+1, . . . , Tk+v−1,
as shown in Fig. 5(b). Note that this condition cannot
be achieved if we use a naive scheme where each TB is
responsible for a single task, as shown in Fig. 5(a).

Using the task assignment scheme mentioned above,
condition 2) is further needed to achieve memory coalescing.
Suppose that task Tk accesses an input element ek,s, where
1 ≤ k ≤ n and 1 ≤ s ≤ m. Since the PS application
applies the same operations to different parameters, other
tasks Tk+1, Tk+2, . . . , Tk+v−1 probably access their input
elements ek+1,s, ek+2,s, . . . , ek+v−1,s located at the same
address s, respectively (see Fig. 4(a)). Therefore, as shown
in Fig. 4(b), we reorganize the input/output data in an inter-
leaved manner. This reorganization stores data elements such
that different tasks can access contiguous address at the same

cycle. That is, it stores elements ek,s, ek+1,s, . . . , ek+v−1,s in
a sequence, instead of the original order: ek,1, ek,2, . . . , ek,m.

B. Reducing Off-chip Memory Access

As we mentioned in Section III-A, shared memory is
useful to save the bandwidth of off-chip memory. For this
purpose, our scheme stores the subset D of input data in
shared memory if possible. To do this, threads in the same
TB firstly copy the data from off-chip memory to shared
memory. This copy operation must be done in a cooperative
manner to prevent redundant memory transactions. Threads
are then allowed to perform computation by accessing shared
memory instead of off-chip memory. However, they have to
copy results to off-chip memory before kernel completion.
Since our scheme processes v tasks at the same time, the
amount of off-chip memory access can be roughly reduced
by a factor of v if we store D in shared memory.

Note that this strategy is available only if the naive scheme
leaves room in shared memory. Otherwise, our scheme
cannot store D in shared memory, so that it has the same
memory allocation as the naive scheme. Another drawback
of our scheme is that it can consume v times more shared
memory due to simultaneous execution of v tasks. Since the
capacity of shared memory is limited by 16 KB in the GT200
architecture, this drawback can reduce the number of active

114

Table I
OVERVIEW OF EXPERIMENTAL APPLICATIONS. DATA SIZE IS PRESENTED AS PER-PARAMETER VALUE. RESOURCE USAGE IS SHOWN AS PER THREAD

BLOCK.

Application Kernel
Resource usage Input/output data

Grid size TB size Shared memory per TB (B) Classification Location Size (B)
I: 2-D images Global 32 K

MAD (256,1) (64,1,1) 56 D: coefficients Shared 24 M
Optical O: 1-D array Global 12 M
simulator I: 1-D array Global 12 M

Reduction (256,1) (4,1,1) 56 D: none — —
O: 2-D images Global 32 K
I: 2-D signal Global 16 M

Row (16,2048) (152,1,1) 616 D: coefficients Constant 68
Gaussian O: 2-D signal Global 16 M
filter I: 2-D signal Global 16 M

Column (128,43) (16,8,1) 4144 D: coefficients Constant 68
O: 2-D signal Global 16 M

threads as compared with the naive scheme. Similarly, the
lack of registers can cause the same issue. Thus, the scheme
has a disadvantage with respect to guideline 3) mentioned
in Section III-A. A possible solution to this issue is to
decompose the kernel code into smaller pieces such that
each of the pieces can run under limited resources.

V. EXPERIMENTAL RESULTS

We now show some experimental results to evaluate the
proposed scheme in terms of performance. We applied our
scheme to two practical applications: an optical propaga-
tion simulator and a Gaussian filter [5]. Table I shows an
overview of the applications with their input/output data. The
data sizes are presented as per-parameter values, so that they
should be multiplied with v = 16 for our scheme.

The simulator performs convolution for a large number of
64 × 64-pixel image pairs. It is used for optimizing circuit
patterns and optical conditions to accelerate development
of NAND memory. Therefore, there are a large number of
patterns that must be investigated by the simulation. The
convolution operation is implemented by the multiply-add
(MAD) kernel and the reduction kernel. Since the MAD
kernel accesses the same weight coefficients for every pair,
this constant data can be regarded as the common data D.
Thus, the coefficients can be reused between different pairs,
so that they are sent to the GPU only once before the first
kernel execution. One problem here is that the coefficients
take 24 MB of memory space, which exceeds the capacity
of shared memory. To deal with this capacity problem, the
MAD kernel performs computation in a step-by-step manner
using at most 16 KB of coefficients at each step. In contrast,
there is no such a common data in the reduction kernel.

The Gaussian filter applies a separable convolution to
two-dimensional (2-D) signal with a Gaussian function. The
signal here is given by an array of 2048 × 2048 elements,
which is larger than the images processed by the simulator.
Therefore, the filtering performance can be limited by the
data transfer between the CPU and the GPU rather than the
kernel execution. The filter is implemented by two kernels,

each responsible for 1-D convolution in the row direction
and that in the column direction. Both kernels store Gaussian
coefficients in constant memory because they are small
enough to store in the memory and every thread iteratively
access them. The kernels are also accelerated using a tiling
technique [11], which partitions the image domain into
multiple tiles. Similar to cache blocking techniques on the
CPU, this technique contributes to reduce the amount of
computation by performing data reuse within TBs. Thus,
the filter uses shared memory for complexity reduction.

As shown in Table I, all kernels except the reduction
kernel have a TB size of at least 64 threads for a single
parameter. Therefore, the TB size can exceed the maximum
available size of 512 threads [5] if 16 parameters are
processed at the same time. To avoid this problem, we
reduced the TB size of the original code and then have
applied our scheme to the modified code. For the MAD,
row and column kernels, the TB sizes in our scheme are
reduced to 16 × 32, 16 × 32 and 16 × 2 threads (per 16
parameters), respectively. Similarly, we have to use smaller
tiles for the column kernel to reduce the usage of shared
memory. We reduced the usage to 50% by using tiles with
33% smaller height.

The experiments were performed using a Windows XP
machine having a GeForce GTX 285 card with CUDA 2.3
[5] and driver version 195.62. This machine has a Xeon
X5160 CPU running at 3 GHz clock speed. A Linux machine
was also used for experiments but we show here the results
on the Windows machine because there is no significant
difference between them.

A. Performance Comparison with Previous Scheme

We first compare the scheme with a naive scheme that
simply processes a single parameter by a kernel invocation.
Figure 6 shows the breakdown of the execution time for
16 parameters, containing the data reorganization time, the
kernel execution time and the data transfer time between
the CPU and the GPU. Note that the data transfer time in
Fig. 6(a) does not include the time needed for coefficients

115

0

5

10

15

20

25

30

35

40

45

Naive Proposed

E
x

ec
u

ti
o

n
 ti

m
e

(m
s)

Data reorganization

Data download

MAD kernel

Reduction kernel

Data readback

(a)

0

100

200

300

400

500

600

700

Naive Proposed

E
x

ec
u

ti
o

n
 ti

m
e

(m
s)

Data reorganization

Data download

Row kernel

Column kernel

Data readback

(b)

Figure 6. Performance comparison with a naive scheme. Breakdown of execution time (a) for the simulator and (b) for the filter. Data download represents
the data transfer from the CPU to the GPU and data readback represents that in the opposite direction.

because they are sent only once before the first kernel
invocation, as we mentioned in Section V.

With respect to the simulator, the proposed scheme re-
duces the execution time from 42.1 ms to 9.3 ms, achieving
4.5 times higher performance than the naive scheme. In par-
ticular, we find that the reduction kernel runs 12 times faster
than the naive scheme. This is due to the non-coalesced
accesses occurred in the naive scheme. In this kernel, threads
in a half-warp access different memory segments at every
step. Since each parameter has irregular access patterns,
it is not easy to eliminate such inefficient accesses in the
naive scheme. Therefore, our scheme eliminates them by
coalescing accesses between different parameters. Actually,
we find that the proposed scheme reduces the number of
32-byte memory load transactions (glb 32b) from 146,525
to 408 according to the CUDA profiler.

We also find that the overhead of data reorganization is
small enough in this application. It takes 0.8 ms to reorganize
data for every 16 parameters. This low overhead contributes
to increase the speedup over a CPU version from a factor
of 6 to that of 28. The CPU version here is a single-
core implementation but accelerated using streaming SIMD
extensions (SSE) instructions [12].

In contrast, our scheme fails to improve the performance
of the Gaussian filter, as shown in Fig. 6(b). We observe
68% performance degradation as compared with the naive
scheme. This is mainly due to the overhead of data reorga-
nization. Unlike the simulator mentioned before, the filter
processes a large array of 2048×2048 elements. Therefore,
the input data size reaches 256 MB when v = 16. Since this
overhead occurs on the CPU, we think that the overhead
can be overlapped with kernel execution by using a stream
processing technique [5], [13]. In addition to this overhead,
both of the kernels reduce the performance to approximately
50%. A detailed analysis will be presented later in Section
V-B.

B. Efficiency Analysis

We next investigate the efficiency of our scheme in terms
of effective memory bandwidth. We also evaluate the effects
of using shared memory. For this purpose, we develop an
implementation that uses our scheme but without storing D
in shared memory.

Figure 7 shows the effective bandwidth of each implemen-
tation. In the naive scheme, the original MAD kernel pro-
cesses 80% of memory transactions in a coalesced manner
because it has high memory locality. Therefore, the effective
memory bandwidth reaches 78 GB/s, which corresponds to
approximately 50% of the theoretical memory bandwidth
(159 GB/s). On the other hand, the reduction kernel results in
6 GB/s, which is extremely lower than the MAD kernel due
to irregular accesses. By applying our scheme to both ker-
nels, the MAD kernel and the reduction kernel increase the
effective bandwidth to 120 GB/s and 79 GB/s, respectively.
Thus, our scheme significantly increases the reduction kernel
performance by coalescing irregular accesses for multiple
parameters.

The MAD kernel further increases the effective bandwidth
to 138 GB/s by using shared memory for the common
data D, namely the coefficients. In this kernel, every thread
fetches 12 array elements to obtain their results. Since 4 out
of 12 elements are coefficients stored in shared memory, the
amount of off-chip memory accesses is reduced by roughly
33% in the shared memory version. Actually, the proposed
scheme achieves 37% higher kernel performance by storing
D in shared memory. Note that the reduction kernel has
the same bandwidth whether we use shared memory or not,
because it lacks data that can be stored in shared memory.

With respect to the Gaussian filter, the naive scheme
processes all memory transactions in a coalesced manner.
Furthermore, both kernels efficiently use shared memory,
achieving the effective bandwidth of more than 500 GB/s.
In contrast, the proposed scheme increases the effective
bandwidth from 100 GB/s to around 300 GB/s by using

116

0

20

40

60

80

100

120

140

160

Naive Proposed w/o shared

memory

Proposed

E
ff

ec
ti

v
e

b
an

d
w

id
th

 (
G

B
/s

)

MAD kernel

Reduction kernel

(a)

0

100

200

300

400

500

600

700

Naive Proposed w/o shared

memory

Proposed

E
ff

ec
ti

v
e

b
an

d
w

id
th

 (
G

B
/s

)

Row kernel

Column kernel

(b)

Figure 7. Effective bandwidth of kernels composing (a) the simulator and (b) the filter.

shared memory. Thus, using shared memory for D is also
effective in this application. However, both results are lower
than the original bandwidth of 500 GB/s.

In order to investigate why our scheme fails to improve
the filtering performance, we develop another naive im-
plementation that uses the same TB size as the proposed
scheme. Figure 8 shows the kernel execution time of all
implementations. We find that the naive scheme drops the
performance of both kernels if it uses the same TB size
as the proposed scheme. This performance degradation is
due to 33% smaller TBs employed in our scheme. Due to
these smaller TBs, the tiling technique reduces the degree
of data reuse. Consequently, the row kernel has 1.9 times
more instructions and 1.8 times more amount of off-chip
memory accesses, taking approximately three times longer
execution time as compared with the original version. Thus,
the proposed scheme reduces the execution time from 34.7
ms to 27.0 ms but this improvement is achieved without
using the optimal TB size.

On the other hand, the column kernel drops the kernel
performance due to smaller tiles, which also reduce the
efficiency of data reuse. Similar to the row kernel, the
column kernel in our scheme has 1.5 times more accesses
to off-chip memory though it reduces the usage of shared
memory by 50%. In summary, our scheme requires us to
modify the kernel code to run with smaller TBs and less
amount of shared memory. It can result in low performance
if the modified code drops the efficiency such as the degree
of data reuse.

Finally, we investigate the effects of constant memory.
Using constant memory instead of shared memory, the pro-
posed scheme achieves 16% and 13% higher performance
for the row kernel and for the column kernel, respectively
(Fig. 7). This improvement is achieved by constant caches,
which reduce the amount of off-chip memory accesses. Con-
stant memory differs from shared memory in that different

13.0

34.7
27.0

22.5

14.6

81.6

30.1
26.1

0

10

20

30

40

50

60

70

80

90

Naive Naive w/ small

TB size

Proposed Proposed w/

constant memory

E
x

ec
u

ti
o

n
 t
im

e
(m

s)

Row kernel

Column kernel

Figure 8. Kernel execution time of Gaussian filter. Naive scheme with
small TB size uses the same TB size as the proposed scheme.

TBs can share on-cache data. In the shared memory version,
every TB has to copy data from global memory to shared
memory because shared memory is a per-TB memory space.
In contrast, TBs allocated to the same MP can prevent off-
chip accesses after one of them has copied data from global
memory. Thus, the number of off-chip memory accesses
equals to the number of MPs rather than that of TBs if the
constant data is smaller than the cache capacity. Actually,
the CUDA profiler shows that the constant memory version
allows every TB to have 17 less memory accesses than the
shared memory version. Therefore, we think that it is better
to store D in constant memory if it has smaller size than the
capacity of constant caches.

VI. CONCLUSION

We have presented a parallelization scheme for PS ap-
plications accelerated using CUDA. Our scheme increases
the entire throughput by simultaneously processing multiple
parameters instead of a single parameter. It stores the in-

117

put/output data in an interleaved manner to realize coalesced
memory access during kernel execution. Furthermore, the
scheme tries to save the bandwidth of off-chip memory by
using shared on-chip memory for the common data that can
be accessed for multiple parameters.

In experiments, our scheme achieves 4.5 times higher
performance for an optical propagation simulator. In partic-
ular, the modified reduction kernel runs 11 times faster than
the original version because it has irregular access patterns.
However, it fails to improve the performance of the Gaussian
filter optimized already with memory coalescing. Therefore,
we think that the scheme is useful to resolve the issue of
irregular accesses if memory coalescing cannot be achieved
with a single parameter. We also find a drawback of our
scheme. Since the scheme roughly consumes v = 16 times
more resources, some kernels have to reduce the TB size
and the usage of shared memory. Such modifications can
result in a lower efficiency in terms of data reuse.

One future work is to develop an automated tool that
minimizes the efforts to apply our scheme to the kernel code.
We are also planning to evaluate our scheme using the new
Fermi architecture [14].

ACKNOWLEDGMENT

This work was partly supported by JSPS Grant-in-Aid
for Scientific Research (A)(20240002) and the Global COE
Program “in silico medicine” at Osaka University. We are
grateful to the anonymous reviewers for their valuable
comments.

REFERENCES

[1] S. D. Olabarriaga, A. J. Nederveen, and B. O. Nualláin,
“Parameter sweeps for functional MRI research in the “virtual
laboratory for e-science” project,” in Proc. 17th IEEE Int’l
Symp. Cluster Computing and the Grid (CCGrid’07), May
2007, pp. 685–690.

[2] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, Mar. 2008.

[3] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “GPU computing,” Proceedings of the
IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[4] The Folding@Home Project, “Folding@home distributed
computing,” 2010, http://folding.stanford.edu/.

[5] NVIDIA Corporation, “CUDA Programming Guide Version
2.3,” Jul. 2009, http://developer.nvidia.com/cuda/.

[6] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, “Stream-
ing algorithms for biological sequence alignment on GPUs,”
IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 9,
pp. 1270–1281, Sep. 2007.

[7] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor -
a hunter of idle workstations,” in Proc. 8th Int’l Conf.
Distributed Computing Systems (ICDCS’88), Jun. 1988, pp.
104–111.

[8] J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth, “Master-
worker: An enabling framework for applications on the com-
putational grid,” Cluster Computing, vol. 4, no. 1, pp. 63–70,
Mar. 2001.

[9] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,
M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,
G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov,
“Adaptive computing on the grid using AppLeS,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, no. 4, pp. 369–382,
Apr. 2003.

[10] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-
Z. Ueng, S. S. Baghsorkhi, and W. mei W. Hwu, “Program
optimization carving for GPU computing,” J. Parallel and
Distributed Computing, vol. 68, no. 10, pp. 1389–1401, Oct.
2008.

[11] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in Proc. Int’l Conf. High Performance
Computing, Networking, Storage and Analysis (SC’08), Nov.
2008, 11 pages (CD-ROM).

[12] A. Klimovitski, “Using SSE and SSE2: Misconceptions and
reality,” in Intel Developer Update Magazine, Mar. 2001.

[13] S. Nakagawa, F. Ino, and K. Hagihara, “A middleware for
efficient stream processing in CUDA,” Computer Science -
Research and Development, vol. 25, no. 1/2, pp. 41–49, May
2010.

[14] NVIDIA Corporation, “NVIDIA’s Next Generation
CUDA Compute Architecture: Fermi,” Nov. 2009,
http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf.

118

