
Noname manuscript No.
(will be inserted by the editor)

A Middleware for Efficient Stream Processing in CUDA

Shinta Nakagawa · Fumihiko Ino · Kenichi Hagihara

Received: date / Accepted: date

Abstract This paper presents a middleware capable of
out-of-order execution of kernels and data transfers for
efficient stream processing in the compute unified de-
vice architecture (CUDA). Our middleware runs on the
CUDA-compatible graphics processing unit (GPU). Us-
ing the middleware, application developers are allowed
to easily overlap kernel computation with data trans-
fer between the main memory and the video memory.
To maximize the efficiency of this overlap, our middle-
ware performs out-of-order execution of commands such
as kernel invocations and data transfers. This run-time
capability can be used by just replacing the original
CUDA API calls with our API calls. We have applied
the middleware to a practical application to understand
the run-time overhead in performance. It reduces exe-
cution time by 19% and allows us to process large data
that cannot be entirely stored in the video memory.

Keywords Stream processing · overlap · CUDA ·
GPU

1 Introduction

Stream processing [4] has become increasingly impor-
tant with emergence of stream applications such as au-
dio/video processing [9] and time-varying visualization
[5]. In this stream programming model, applications
are decomposed into stages of sequential computations,

S. Nakagawa · F. Ino · K. Hagihara
Graduate School of Information Science and Technology,
Osaka University,
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Tel.: +81-6-6879-4353
Fax: +81-6-6879-4354
E-mail: {s-nakagw, ino}@ist.osaka-u.ac.jp

which are expressed as kernels. On the other hand, in-
put/output data is organized as streams, namely se-
quences of similar data records. Input streams are then
passed through the chain of kernels in a pipelined fash-
ion, producing output streams. One advantage of stream
processing is that it can exploit the parallelism inherent
in the pipeline. For example, the execution of the stages
can be overlapped with each other to exploit task par-
allelism. Furthermore, different stream elements can be
simultaneously processed to exploit data parallelism.

One of the stream architecture that benefit from
the advantages mentioned above is the graphics pro-
cessing unit (GPU), originally designed for acceleration
of graphics applications. However, it now can acceler-
ate many scientific applications typically with a 10-fold
speedup over CPU implementations [2]. Most of the ap-
plications are implemented using a flexible development
framework, called compute unified device architecture
(CUDA) [1]. This vendor-specific framework allows us
to directly manage the hierarchy of memories, which
is an advantage over graphics APIs such as OpenGL.
Using this C-like language, developers are allowed to
implement their GPU programs without knowledge of
computer graphics.

In general, CUDA-based applications consist of host
code and device code, each running on the CPU and
on the GPU, respectively. The host code invokes the
device code that implements kernels of stream applica-
tions. Thus, the GPU is treated as a coprocessor of the
CPU. On the other hand, input/output streams must
be stored in video memory, called device memory. Since
device memory is separated from main memory, namely
host memory, streams have to be transferred between
them. Data transfer from host memory to device mem-
ory is called “download” and “readback” in the opposite
direction. Data transfer can be overlapped with ker-

2

nel computation using the asynchronous CUDA API,
which immediately returns from API calls before their
completion.

Notice here that the term “stream” in CUDA has a
definition different from that mentioned above. To avoid
confusion, we denote the former as “CUDA stream” in
this paper. A CUDA stream is a stream object, which
denotes a sequence of commands that execute in or-
der [1]. Such commands contain data download, kernel
execution, and data readback. Using multiple CUDA
streams, we can implement stream applications on the
GPU. For example, a typical implementation will asso-
ciate each of the stream elements with a CUDA stream
to overlap kernel computation for a CUDA stream with
data transfer for another CUDA stream.

One technical problem in CUDA is that data trans-
fer commands from CUDA streams are processed in
an in-order sequence. Similarly, kernels are also exe-
cuted in an in-order sequence. These constraints will
result in non-overlapping execution though there is no
data dependence between different stream elements. For
example, a readback command from a CUDA stream
can prevent a download command of another CUDA
stream from being overlapped with kernel computation.
Therefore, developers have to call asynchronous API
functions in the appropriate order to realize overlap-
ping execution. Finding the appropriate order is a time-
consuming task because it depends on run-time situa-
tions such as API call timings and application code.

In this paper, we propose a middleware capable of
out-of-order execution of kernels and data transfers,
aiming at achieving efficiently overlapped stream pro-
cessing in CUDA. The proposed middleware is designed
to reduce the development efforts needed for GPU ac-
celerated stream processing. It automatically changes
the execution order to maximize the performance by
overlapping data transfer with kernel execution. This
run-time optimization can easily be done by replacing
the original CUDA API calls with our middleware API
calls in host code. Our middleware currently assumes
that (1) the application can be adapted to the stream
programming model and (2) the kernel execution time
and the data transfer time does not significantly vary
between different stream elements. The middleware is
implemented as a class of the C++ language.

The rest of the paper is organized as follows. Section
2 introduces some related work. Section 3 presents pre-
liminaries needed to understand our middleware. Sec-
tion 4 then describes the details of the middleware. Sec-
tion 5 shows some experimental results obtained using
a practical application. Finally, Section 6 concludes the
paper with future work.

2 Related Work

To the best of our knowledge, there is no work that
tries to automate the overlap for CUDA-enabled stream
applications. However, some development frameworks
focus on GPU-accelerated stream processing. For ex-
ample, Yamagiwa et al. [8] propose a stream-based dis-
tributed computing environment. Their environment is
implemented using the DirectX graphics library. Our
middleware differs from their environment in that the
middleware focuses on the CUDA framework and opti-
mizes the interaction between the GPU and the CPU.

Hou et al. [3] present bulk-synchronous GPU pro-
gramming (BSGP), which is a programming language
for stream processing on the CUDA-compatible GPU.
Using their compiler, application developers can auto-
matically translate sequential C programs into stream
kernels with host code. Thus, the main focus of this lan-
guage is to free application developers from the tedious
chore of temporary stream management. Our middle-
ware has almost the same purpose as their language but
provides an out-of-order execution capability to maxi-
mize the effects of stream processing.

Some practical applications [6,7] are implemented
using the stream programming model with achieving
the overlap. However, their purpose is to accelerate spe-
cific applications. In contrast, our middleware provides
a general framework to application developers.

3 Preliminaries

This section explains how stream processing can be
done in CUDA.

3.1 Stream Programming Model

We consider here a simple stream model that produces
an output stream by applying a chain of commands,
f1, f2, . . . , fm, to an input stream. Parameter m here
represents the number of commands that compose the
chain. Let I and O be the input stream and the out-
put stream, respectively. The input stream then can be
written as I = {e1, e2, . . . , en}, where ei (1 ≤ i ≤ n)
represents an element of the input stream and n repre-
sents the number of elements in the stream. Similarly,
we have the output stream O = {g1, g2, . . . , gn}, where
gi (1 ≤ i ≤ n) represents an element of the output
stream. The computation then can be expressed as

gi = fm ◦ fm−1 ◦ · · · ◦ f1(ei), (1)

where 1 ≤ i ≤ n and ◦ represents the composition op-
erator. In other words, the computation consists of n

3

Kernel executionDownload Readback

CUDA

stream 1

CUDA

stream 2
Time

(a)

Kernel executionDownload Readback

CUDA

stream 1

CUDA

stream 2
Time

(b)

Fig. 1 Timeline view of naive methods running on a single
GPU. (a) Overlapping execution continuously runs kernels
but (b) non-overlapping execution causes waiting time due
to data transfer commands. In both cases, four tasks are pro-
cessed using two CUDA streams (n = 4 and l = 2). See also
Fig. 2 for the details of the corresponding pseudocode.

tasks, where a task corresponds to the chain of com-
mands to a stream element.

Let → be the relation that represents data depen-
dence. A sequential order of commands, fs,i → ft,j ,
defines that the s-th command to the i-th element ei

have to be processed before the t-th command to the
j-th element ej , where 1 ≤ s, t ≤ m and 1 ≤ i, j ≤ n.
The data dependencies in the stream model can be ex-
pressed as

∀s < t, fs,i → ft,i, (2)

where 1 ≤ i ≤ n. Equation (2) indicates that commands
to the same element have to be serially processed in a
pipelined fashion. In contrast, different elements can be
independently processed in the pipeline. Therefore,

∀i 6= j, fs,i 6→ ft,j , (3)

where 1 ≤ s, t ≤ m and 6→ denotes the negation of →.

3.2 Stream Processing in CUDA

Suppose that we have a stream application with a sin-
gle kernel and have a single GPU for acceleration. In
this case, the chain of commands consists of data down-
load, kernel execution, and data readback (m = 3). Eq.
(3) then indicates that kernel computation for a CUDA
stream can be overlapped with data transfer for another
CUDA stream, as shown in Fig. 1(a).

Let TD, TK , and TR denote the data download time
per task, the kernel execution time per task, and the
data readback time per task, respectively. Suppose that
the kernel execution time is much longer than the data

Input: Input stream I = {e1, e2, . . . , en}, size n, and
number l of CUDA streams.

Output: Output stream O = {g1, g2, . . . , gn}.
1: cudaStream t str[l];
2: for i = 1 to n do
3: Download stream element ei using str[i mod l];
4: end
5: for i = 1 to n do
6: Launch kernel to compute gi from ei using str[i mod l];
7: end
8: for i = 1 to n do
9: Readback output stream gi using str[i mod l];

10: end
11: cudaThreadSynchronize();

(a)

Input: Input stream I = {e1, e2, . . . , en}, size n, and
number l of CUDA streams.

Output: Output stream O = {g1, g2, . . . , gn}.
1: cudaStream t str[l];
2: for i = 1 to n do
3: Download stream element ei using str[i mod l];
4: Launch kernel to compute gi from ei using str[i mod l];
5: Readback output stream gi using str[i mod l];
6: end
7: cudaThreadSynchronize();

(b)

Fig. 2 Pseudocode of naive methods. (a) Overlapping ver-
sion [1] with pre-issued commands and (b) non-overlapping
version without pre-issued commands.

transfer time: TK À TD + TR. The optimal execution
time Topt then will be obtained if the GPU continuously
runs kernels for all n tasks, as shown in Fig. 1(a). In
this case, the optimal time can be given by

Topt = TD + nTK + TR. (4)

This optimal time will be obtained if data transfers
are fully overlapped with kernel computation using the
asynchronous API with multiple CUDA streams, as
shown in Fig. 2(a). In this code, n tasks are processed
using l CUDA streams. All of download commands are
first issued in an asynchronous mode. After this, all of
kernels are invoked before any readback commands. Fi-
nally, cudaThreadSynchronize() is called to finalize all
CUDA streams before proceeding further. Figure 1(a)
illustrates the timing behavior of this code.

One problem in this naive code is that all of down-
load commands are issued before kernel execution. Such
a pre-issue strategy is not possible in stream applica-
tions that produce input data streams at regular inter-
vals. To avoid this pre-issue, we can modify the loop
structure as shown in Fig. 2(b). In this strategy, the
chain of download, kernel execution, and readback com-
mands is serially issued for every task, so that we can
deal with input data streams that come one after an-
other. Furthermore, it can reduce the video memory
consumption from O(n) to O(1). However, our prelimi-
nary evaluation shows that such a strategy fails to over-
lap data transfer with kernel computation. Figure 1(b)
illustrates how the code is executed on the GPU. The

4

problem here is that the readback command for the first
task blocks the download command for the second task.
We also carried out other preliminary experiments to
find the constraints in CUDA streams. The constraints
can be summarized as follows.

C1. Data transfer commands from CUDA streams are
processed in an in-order sequence.

C2. Kernels are also executed in an in-order sequence.
However, kernel and data transfer commands have
no constraint except for Eq. (2).

C3. Graphics drivers currently do not support multi-
threaded data transfer.

C4. Running kernels cannot be stopped until they com-
plete their execution. Similarly, data transfer com-
mands cannot be cancelled after their issue.

These constraints indicate that we need some mecha-
nisms to perform out-of-order execution at run-time.

4 Proposed Middleware

The goal of our middleware is to realize overlapped
stream processing without using the pre-issue strategy
in CUDA. In other words, the middleware must realize
overlapping execution using host code similar to that
in Fig. 2(b). To achieve this, we dynamically reorder
issued commands and schedule them with the appro-
priate order for the overlap. This section describes how
such a scheduling mechanism is implemented in the
middleware.

4.1 Architectural Design

The architectural design of our middleware mainly con-
sists of three points as follows.

– Application-level mechanism. Since the details of
graphics drivers are not opened to public, we have
decided to implement the out-of-order capability at
the application level. Therefore, application devel-
opers must modify their host code to replace CUDA
API calls with our middleware API calls. Our API
then not only invokes the appropriate CUDA func-
tions but also performs reordering of issued com-
mands before invocation.

– Buffering strategy. As we mentioned in Section 3.2,
the optimal time usually will not be achieved if the
GPU waits for kernel invocation. To prevent such
waiting time, we have to buffer CUDA API calls as
candidates for execution. Otherwise, we will fail to
change the execution order at run-time due to con-
straint C4. Thus, our middleware has a command
buffer that stores instances of CUDA API calls.

Thread creation

Memory

allocation

API call

Thread

synchronization

Thread

termination

Middleware

Memory

allocation

API call

Host code

(main thread)
Synchronous call Asynchronous call

. . .

.

Time

M
id

d
le

w
ar

e
A

P
I

Scheduler

(child thread)

C
U

D
A

 A
P

I

S
ch

ed
u

lin
g

Fig. 3 Timing behavior of proposed middleware. Our mid-
dleware receives API calls from host code that implements
the application. It creates a CPU thread to perform run-time
scheduling for overlap. A thread is responsible for a single
GPU that runs multiple CUDA streams.

– Scheduler thread creation. Since kernels can com-
plete their execution asynchronously from other CUDA
API calls, it is better to create another CPU thread
in order to separate the scheduling capability from
the original thread that executes the host code. This
separation allows the created child thread to devote
itself to continuously execute kernels on the GPU.
Thus, we can execute a kernel without causing wait-
ing time if the kernel is buffered for execution. One
drawback of this strategy is that it consumes more
CPU resources due to the additional thread.

Figure 3 illustrates how the middleware behaves be-
tween the host code and CUDA API calls. In this figure,
synchronous and asynchronous function calls are repre-
sented by solid arrows and dashed arrows, respectively.
As shown in this figure, CUDA API calls are encap-
sulated within our middleware API calls. The middle-
ware first creates a child thread from the host code,
namely a master thread. The child thread then runs
as a scheduler who dispatches tasks to CUDA streams.
The scheduler will terminate when all issued commands
are completed after thread synchronization.

The scheduler also takes the responsibility of com-
mand reordering and load balancing between CUDA
streams. As we mentioned before, our scheduler has a
command buffer to enqueue and dequeue API call in-
stances at run-time. Using this buffer, the scheduler
optimizes the execution order during program execu-
tion. Since commands will be issued one after another,
the order can vary with the progress of program execu-
tion. We present the details of the scheduling algorithm
later in Section 4.3. A load balancing capability is also
needed to continuously invoke kernels using multiple
CUDA streams, as shown in Fig. 1(a).

5

Call functions

Not all

called

All called

Synchronized

Resuest

thread sync.

Initialization

(a)

Check

pending calls

Check

GPU status

Check

bus status

Idle

Busy

Busy

Select download
Idle

Select kernel

Selected
No left

Selected
Select readback

No left

Selected

No left

No left

Left

Async. execution

Async. execution

Check

sync. req

Received

Not

received

Initialization

(b)

Fig. 4 State transition diagrams of run-time scheduler. (a)
Diagram for the host code (main thread) and (b) that for the
scheduler (child thread).

4.2 Run-time Scheduler

Figure 4 shows state transition diagrams for the host
code and the scheduler. The host code runs as the main
thread that creates a child thread for the scheduler.
The code iteratively calls middleware API functions in
an asynchronous mode, as shown in Fig. 3. On thread
creation, the scheduler will be initialized with a default
constructor, which sets the number l of CUDA streams
and allocates memory for tasks. The middleware then
enqueues the corresponding CUDA call instances into
the command buffer for later execution. Once all API
functions are called from the host code, it then requests
synchronization to the child thread to finalize all of is-
sued commands. This synchronization is necessary be-
cause threads are running in an asynchronous manner.

On the other hand, the scheduler selects the ap-
propriate command from the command buffer, which
manages all of uncompleted instances at that time. Af-
ter this selection, it calls the corresponding CUDA API
functions in an asynchronous manner. Since the sched-
uler must access the command buffer, the buffer is shared
between the master thread and the child thread. This
also indicates that we need a lock/unlock mechanism
to implement mutual exclusion for the buffer. We solve
this problem by a critical section.

Though the details of the selection algorithm is de-
scribed later in Section 4.3, we present here the selec-
tion priority between download, kernel execution, and
readback commands. The key idea to achieve the over-
lap is that the middleware tries to have at least a kernel
call instance in the command buffer, which prevents the
GPU from waiting kernel invocation. Therefore, we give
the highest priority to kernel call commands, as shown

in Fig. 4. The second priority is given to download com-
mands to make sure that at least a buffered kernel in-
stance is ready for the next execution. Finally, readback
commands are executed when the GPU is busy for ker-
nel execution and there is no download instance in the
command buffer.

Thus, the priority mentioned above implements the
out-of-order capability of the middleware. Since the or-
der is determined at run-time, the generated order might
be different from the optimal order that can be deter-
mined after program execution.

4.3 Scheduling Algorithm

Suppose that the middleware has a set S of CUDA
streams and a set Q of command buffers. For l CUDA
streams, the former can be written as S = {s0, s1, . . . , sl−1},
where si (0 ≤ i ≤ l−1) represents a stream object. Simi-
larly, the latter can be written as Q = {q0, q1, . . . , ql−1},
where qi (0 ≤ i ≤ l − 1) represents the buffer for the
i-th CUDA stream si.

The basic idea of our scheduling algorithm is that
it invokes kernels as soon as it can, and then tries to
transfer data to overlap it with kernel computation. The
algorithm mainly consists of two steps as follows.

1. Task assignment and buffering. On every middle-
ware function call, the algorithm assigns the corre-
sponding task to a CUDA stream si, where 1 ≤ i ≤
l−1. The CUDA function instance that corresponds
to the called middleware function is also enqueued
to buffer qi, which manages si.

2. Task selection and execution. The algorithm itera-
tively checks the status of running CUDA call in-
stances. At every completion of an instance, it im-
mediately selects and dequeues a CUDA call in-
stance from the command buffer and then executes
the dequeued instance. An instance A will be se-
lected (1) if there is no running instance or (2) if
there is a running instance that can be overlapped
with the instance A.

Note here that both steps are asynchronously processed
in the middleware. Step 1 is processed by the main
thread while step 2 is iteratively processed by the child
thread until the completion of all commands.

Figure 5 presents a pseudocode of the task assign-
ment and buffering algorithm. This algorithm runs as a
part of middleware functions replaced with the CUDA
functions in host code. In addition to the arguments
args of the CUDA function f , our middleware func-
tion requires an additional argument, namely the task
identifier t, to associate the instance of f with a task.
In a case of Fig. 2(b), application developers can give

6

Algorithm 1: Task assignment and buffering
Input: CUDA function f , its arguments args, task identifier t,

shared buffer set Q, and number l of CUDA streams.
Output: Updated buffer set Q.
1: i := t mod l;
2: Enter critical section;
3: Enqueue f(args) into qi ∈ Q;
4: Leave critical section;

Fig. 5 Pseudocode of task assignment and buffering algo-
rithm. This algorithm runs as a part of middleware API calls
replaced with the CUDA API calls. Using the task identifier,
tasks are assigned to CUDA streams in a cyclic manner.

Algorithm 2: Task selection and execution
Input: CUDA stream set S, buffer set Q, and

number l of CUDA streams.
1: u := 0; v := 0; // identifiers of active CUDA streams
2: while (command left in Q) or (no sync. request) do
3: if GPU is idle then
4: 〈f(args), i〉 := select(S, Q, l, “kernel”, u);
5: if f 6= NULL then
6: u := i; // update active identifier
7: Execute f(args) using si ∈ S;
8: end
9: end

10: if Bus is idle then
11: 〈f(args), i〉 := select(S, Q, l, “download”, v);
12: if f = NULL then
13: 〈f(args), i〉 := select(S, Q, l, “readback”, v);
14: end
15: if f 6= NULL then
16: v := i; // update active identifier
17: Execute f(args) using si ∈ S;
18: end
19: end
20: end

Function select(S, Q, l, type, j)
Input: CUDA stream set S, buffer set Q, number l of CUDA

streams, command type type, and CUDA stream identifier j.
Output: Pair 〈f(args), i〉 of executable function f(args)

and CUDA stream identifier i.
1: for k = j to j + l − 1 do
2: i := k mod l;
3: if (si ∈ S is idle) and (qi ∈ Q is not empty) then
4: Set f as the first element of qi; // f : buffered command
5: if f is type command then
6: Enter critical section;
7: Dequeue f(args) from qi; // args: arguments of f
8: Leave critical section;
9: return 〈f(args), i〉;

10: end
11: end
12: end
13: return 〈NULL, 0〉; // no left

Fig. 6 Pseudocode of task selection and execution algorithm.
According to the state transition diagram in Fig. 4(b), com-
mand buffers are scanned in a cyclic manner.

variable i as the task identifier to the middleware. Us-
ing this identifier, the algorithm assigns tasks to CUDA
streams in a cyclic manner. The master thread has to
enter a critical section to access the shared command
buffer.

In contrast to the algorithm that runs on the master
thread, the child thread executes the task selection and
execution algorithm presented in Fig. 6. This algorithm
takes sets S and Q, and their size l as inputs, then
executes commands using the state transition diagram
in Fig. 4(b). Variables u and v in line 1, where 0 ≤
u, v ≤ l − 1, represent the identifiers of active stream

objects that currently occupy the GPU and the data
bus, respectively. These identifiers are used to switch
CUDA streams in a cyclic manner, which contributes
to achieve load balancing between CUDA streams.

The algorithm iteratively calls select() function to
choose the command that should be executed from buff-
ers. This function requires command type type and ac-
tive stream identifier j as inputs. The type here is one
of “kernel,” “download,” and “readback.” The function
then checks command buffers and CUDA stream sta-
tus from the active CUDA stream sj in a cyclic manner.
Finally, it returns a pair 〈f(args), i〉 of a CUDA API
instance and a stream object identifier. Given a pair
〈f(args), i〉 from select() function, the middleware ex-
ecutes f(args) using CUDA stream si.

5 Experimental Results

We now show evaluation results to demonstrate the
effectiveness of our middleware. Firstly, the run-time
overhead is investigated with overlapping effects. We
then show case study to understand how the middle-
ware can be used in practical applications.

In experiments, we used a PC having an Intel Core
i7 940 CPU and an NVIDIA GeForce GTX 280 GPU.
The system is equipped with 12 GB main memory and
1 GB device memory. We have installed CUDA 2.3 and
CUDA driver 190.38 with Windows XP 64-bit Edition.

5.1 Overhead Analysis

We applied the middleware to two dummy programs: a
compute-intensive kernel and a memory-intensive ker-
nel. The reason why we use dummy programs here is
that we need to arbitrarily change the kernel execution
time TK and the data transfer time TD + TR for inves-
tigation. In the following discussion, let r be the time
ratio given by r = (TD +TR)/TK . Both dummy kernels
are iteratively invoked to process 16 stream elements
(n = 16). Each element consists of an array of integers
with size d ranging from 2M to 20M. The time ratio r

can be controlled by changing the array size.
The compute-intensive kernel loads integers from

global memory, and then repeats shift operations on
them. After this, it stores results back to global mem-
ory. All of the data accesses are efficiently carried out
in a coalesced manner [1]. In contrast, the memory-
intensive kernel measures the memory bandwidth by
iteratively performing data load/store to global mem-
ory. Since data transfer between device memory and
main memory consumes memory bandwidth, we use

7

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

E
x
ec

u
ti

o
n
 t
im

e
T

(m
s)

Time ratio r (%)

Original

Stream w/o pre-issue (manual)

Stream w/ pre-issue (manual)

Stream (middleware)

Theoretical bound

(a)

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

E
x
ec

u
ti

o
n
 t
im

e
T

(m
s)

Time ratio r (%)

Original

Stream w/o pre-issue (manual)

Stream w/ pre-issue (manual)

Stream (middleware)

Theoretical bound

(b)

Fig. 7 Measured time for (a) compute-intensive kernel and for (b) memory-intensive kernel. Results contain execution time
of original version, that of manually written stream version with/without pre-issue, that of stream version generated by
middleware, and theoretical bound of stream version. Theoretical bound is given by Eq. (4).

this kernel to understand the overlapping effects under
a bandwidth exhausted situation.

Figure 7 explains how the middleware reduces the
execution time by the overlap. It shows five results, con-
taining the measured time of the original program, that
of the manually written stream program with/without
the pre-issue strategy, that of the stream program gen-
erated by our middleware, and the theoretical bound
of the stream program. The theoretical bound here is
given by Eq. (4).

By comparing middleware results with manual re-
sults, we can see that the middleware efficiently real-
izes the overlap. On the other hand, the manually writ-
ten code fails to overcome the original code if the pre-
issue strategy is not employed in the code. The reason
why our middleware outperforms the original code is
that it hides the overheads inherent in CUDA streams.
Such overheads include (1) the initialization of CUDA
streams and (2) the scheduling cost of the middleware.
The former can be represented as O(dl). This initializa-
tion time ranges from 2 ms to 20 ms in this experiment.
The latter also increases with the number l of CUDA
streams, but the scheduling time is at most 20 µs per
API instance. Therefore, such a scheduler can generate
better execution order of commands with small over-
head, which achieves higher performance than manually
written stream versions.

The middleware achieves almost no overhead for
the compute-intensive kernel. For the memory-intensive
kernel, on the other hand, the overhead increases with
the ratio r and reaches 4.6% when data transfers take
the same time as kernel execution (r = 0.5). In such
bandwidth exhausted situations, the kernel performance

can be decreased due to data transfers. Thus, overlap-
ping execution runs efficiently if the kernel is compute-
intensive rather than memory-intensive.

5.2 Case Study

We applied the middleware to an optical propagation
simulator based on the Fourier transform. The simula-
tor downloads six input streams, invokes two different
kernels (m = 2), and readbacks two output streams.
The data size of input stream elements and that of
output stream elements are 1224 bytes and 32 KB, re-
spectively. In general, this simulator is iteratively ex-
ecuted as a parameter-sweep application, which pro-
cesses a large number of data elements in practical sit-
uations. We measured the performance using at most
50,000 tasks (400 ≤ n ≤ 50, 000), which require 1.6 GB
of video memory to run.

We first modified the host code to replace CUDA
function calls with middleware function calls, as shown
in Fig. 8. In this code, “CudaStreamOptimizer” is the
middleware class and a variable “obj” represents its in-
stance. In addition to this replacement, we also added
some API calls for initialization, synchronization, and
finalization. We next measured the breakdown of exe-
cution time using the original code. It takes 0.06 ms and
0.04 ms to execute download and readback commands
for a single task, respectively. On the other hand, the
first kernel and the second kernel take 0.19 ms and 0.08
ms for a task, respectively.

Figure 9 shows the execution time with different
numbers of tasks. The original and manual stream ver-
sions cannot process more than 29,600 tasks due to the

8

Input: Pointer h in to input stream, task size n, number l of
CUDA streams, memory size memSize, kernel function
kernel, parameters gridDim and blockDim.

Output: Pointer h out to output stream.
1: CudaStreamOptimizer obj; // An instance of middleware
2: obj.initialize();
3: obj.setStream(l); // Set the number of CUDA streams
4: float *d in, *d out; // Pointers to device memory
5: obj.malloc(&d in, memSize); // Replaces cudaMalloc()
6: obj.malloc(&d out, memSize);
7: for (int i = 0; i < n; i + +) { // Use i as task identifier
8: obj.download(i, d in, h in + memSize ∗ i, memSize);
9: obj.launchKernel(i, kernel, gridDim, blockDim,

d in, d out, . . . , NULL);
10: obj.readback(i, h out + memSize ∗ i, d out, memSize);
11: }
12: obj.synchronize();
13: obj.finalize();

Fig. 8 Pseudocode of modified host code. n tasks are pro-
cessed using l CUDA streams. Each CUDA stream allocates
memSize bytes of video memory for computation. Arguments
kernel, gridDim, blockDim are the function and parameters
used in the original code.

0

2

4

6

8

10

12

14

16

4
0
0

2
0
0
0

3
6
0
0

5
2
0
0

6
8
0
0

8
4
0
0

1
0
0
0
0

1
1
6
0
0

1
3
2
0
0

1
4
8
0
0

1
6
4
0
0

1
8
0
0
0

1
9
6
0
0

2
1
2
0
0

2
2
8
0
0

2
4
4
0
0

2
6
0
0
0

2
7
6
0
0

2
9
2
0
0

3
0
8
0
0

3
2
4
0
0

3
4
0
0
0

3
5
6
0
0

3
7
2
0
0

3
8
8
0
0

4
0
4
0
0

4
2
0
0
0

4
3
6
0
0

4
5
2
0
0

4
6
8
0
0

4
8
4
0
0

5
0
0
0
0

E
x
ec

u
ti

o
n
 t
im

e
T

(s
)

Number n of tasks

Original

Stream w/o pre-issue (manual)

Stream w/ pre-issue (manual)

Stream (middleware)

Theoretical bound

Fig. 9 Measured time for an optical simulator with differ-
ent numbers of tasks. Our middleware allows us to deal with
large-scale simulations that exhaust the video memory.

lack of video memory. In contrast, our middleware saves
the memory consumption so that successfully obtains
simulation results for 50,000 tasks.

With respect to performance, the main difference to
dummy programs is that both manually written code
fails to overcome the original code though we employ
the pre-issue strategy. This is due to the initialization
time mentioned before, because this overhead increases
with the number l of CUDA streams. While our middle-
ware always uses two CUDA streams (l = 2) with buffer
reuse, the manual code requires n CUDA streams for
n tasks. Therefore, the overhead in the manual code
increases as we increase the number n of tasks. In con-
trast, our middleware can minimize this overhead, im-
proving the performance by 19%.

6 Conclusion

We have presented a middleware capable of out-of-order
execution of CUDA kernels and data transfers for over-
lapped stream processing on the GPU. The middleware

reduces the development efforts needed for the overlap.
It has a run-time mechanism that maximizes overlap-
ping effects by finding the appropriate execution order
from issued API calls.

In experiments, our middleware successfully over-
laps data transfer with kernel computation. We also
find that the overlapping effects are increased by out-
of-order execution and these effects are close to the the-
oretical bound for two dummy programs. We also have
shown case study, where the middleware improves the
performance of an optical simulator by 19%. It allows
us to deal with large data that cannot be entirely stored
in the video memory.

Future work includes the support of load balancing
to deal with unbalanced tasks.

Acknowledgements This work was partly supported by
JSPS Grant-in-Aid for Scientific Research (A)(20240002) and
the Global COE Program “in silico medicine” at Osaka Uni-
versity. We would like to thank the anonymous reviewers for
their valuable comments.

References

1. NVIDIA Corporation. CUDA Programming Guide Ver-
sion 2.3, July 2009. http://developer.nvidia.com/

cuda/.
2. M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hard-

wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov.
Parallel computing experiences with CUDA. IEEE Micro,
28(4):13–27, July 2008.

3. Q. Hou, K. Zhou, and B. Guo. BSGP: Bulk-synchronous
GPU programming. ACM Trans. Graphics, 27(3), Article
19, Aug. 2008.

4. B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson,
J. Namkoong, J. D. Owens, B. Towles, A. Chang, and
S. Rixner. Imagine: Media processing with streams. IEEE
Micro, 21(2):35–46, Mar. 2001.

5. D. Nagayasu, F. Ino, and K. Hagihara. A decompression
pipeline for accelerating out-of-core volume rendering of
time-varying data. Computers and Graphics, 32(3):350–
362, June 2008.

6. J. C. Phillips, J. E. Stone, and K. Schulten. Adapting
a message-driven parallel application to GPU-accelerated
clusters. In Proc. Int’l Conf. High Performance Com-
puting, Networking, Storage and Analysis (SC’08), Nov.
2008. 9 pages (CD-ROM).

7. C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and
W.-M. W. Hwu. GPU acceleration of cutoff pair potentials
for molecular modeling applications. In Proc. 5th Int’l
Conf. Computing Frontiers (CF’08), pages 273–282, May
2008.

8. S. Yamagiwa and L. Sousa. Design and implementation
of a stream-based distributed computing platform using
graphics processing units. In Proc. 4th Int’l Conf. Com-
puting Frontiers (CF’07), pages 197–204, May 2007.

9. X. Yang, X. Yan, Z. Xing, Y. Deng, J. Jiang, J. Du, and
Y. Zhang. Fei teng 64 stream processing system: Architec-
ture, compiler, and programming. IEEE Trans. Parallel
and Distributed Systems, 20(8):1142–1157, Aug. 2009.

