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Abstract—Exploiting the graphics processing unit (GPU) is
useful to obtain higher performance with a less number of host
machines in grid systems. One problem in GPU-accelerated
grid systems is the lack of efficient multitasking mechanisms.
In this paper, we propose a cooperative multitasking method
capable of simultaneous execution of a graphics application
and a CUDA-based scientific application on a single GPU. To
prevent significant performance drop in frame rate, our method
(1) divides scientific tasks into smaller subtasks and (2) seri-
ally executes them at the appropriate intervals. Experimental
results show that the proposed method is useful to control the
frame rate of the graphics application and the throughput of
the scientific application. For example, matrix multiplication
can be processed at 50% of the dedicated throughput while
achieving interactive rendering at 54 frames per second.
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I. INTRODUCTION

The graphics processing unit (GPU) [1], [2] is an acceler-
ator originally designed for graphics applications. It provides
us high memory bandwidth and floating-point performance
with a single-instruction, multiple-data (SIMD) capability.
Furthermore, it now has a flexible development framework,
called compute unified device architecture (CUDA) [3],
demonstrating many acceleration results typically with a 10-
fold speedup over CPU-based implementations. In CUDA,
the compute-intensive code is usually implemented as a
kernel, namely a function that runs on the GPU.

The GPU is also emerging as a powerful computational re-
source in grid environments, where distributed resources are
virtually collected into an integrated system. For example,
the Folding@home project [4] demonstrates that 70% of the
entire performance is provided by idle GPUs, which account
for only 10% of all resources available in the system. Thus,
exploiting the GPU is useful to obtain higher performance
with a less number of host machines in grid systems. In this
paper, we denote hosts as users who donate their resources
to the grid system. On the other hand, guests are grid users
who submit jobs to the system.

One problem in GPU-accelerated grid systems [5], [6] is
the lack of efficient multitasking mechanisms. For example,
the frame rate of graphics applications and the throughput of
scientific applications can significantly drop when they are
simultaneously executed on the same GPU [7], [8]. This is
due to the current GPU architecture, which (1) allows only

a single kernel to run at a time and (2) switches the running
kernel only when it completes its execution. Therefore, the
frame rate will significantly drop if the guest kernel occupies
the resources for long time.

To avoid this problem, current systems [4], [5] use screen-
savers capable of detecting fully idle GPUs for acceleration
of guest applications. In other words, both guest and host
applications are exclusively executed in the systems, where
idle resources are typically dedicated to guest applications.
In contrast to these dedicated systems, we are focusing on
non-dedicated systems, which have a true resource sharing
mechanism to harness the power of GPUs in the home
and office. For example, such mechanisms allow us to
run guest applications on lightly loaded GPUs, where host
users operate their machines for office work with almost no
workload on the GPU.

Our main goal is to achieve true resource sharing between
hosts and guests for GPU-accelerated grid systems. To
achieve this, we are developing a cooperative multitasking
method capable of simultaneous execution of a graphics
application and a CUDA-based scientific application. Using
this method, screensavers are not needed to ensure exclusive
execution of guest and host applications. Instead, hosts
who accept scientific jobs from guests should specify the
minimum frame rate they need. According to this require-
ment, the proposed method divides the workload of scientific
applications such that each kernel can complete its execution
within the desired period. The method assumes that guest
applications are implemented using CUDA while host appli-
cations are implemented using a periodical rendering model
with graphics libraries such as DirectX [9] and OpenGL
[10].

The rest of this paper is organized as follows. Section II
presents preliminaries including an overview of CUDA and
the periodical rendering model. Section III then describes the
details of our multitasking method and Section IV shows
experimental results. Finally, Section V summarizes the
paper with future work.

II. PRELIMINARIES

This section presents preliminaries needed to understand
our method.
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Figure 1. Hierarchical thread structure in CUDA. The CPU code invokes
kernels, which generate thousands of threads to accelerate computation
on the GPU. An implicit global synchronization is performed between
successive invocations.

A. Compute Unified Device Architecture (CUDA)

CUDA [3] is a flexible development framework for the
NVIDIA GPU. Since it is based on an extension of the C
language, it allows us to easily implement GPU-accelerated
applications, which consist of kernels and CPU code.
CUDA-based kernels typically generate millions of threads
on the GPU, which then accelerate heavy computation by
SIMD instructions on multiprocessors (MPs). Currently, the
number M of MPs ranges from 16 to 30 depending on the
GPU.

Figure 1 illustrates an overview of the hierarchical thread
structure in CUDA. In CUDA programs, threads are classi-
fied into thousands of groups, each called as thread blocks
(TBs). Threads belonging to the same TB are allowed to
synchronize each other, so that such threads can share data
using fast on-chip memory, called shared memory. On the
other hand, data dependencies between different TBs are not
allowed in the kernel. Therefore, we have to separate the
kernel into multiple pieces to deal with such dependencies.
Separated kernels are then serially executed with global
synchronization.

TB is the minimum unit allocated to MPs. Therefore,
the number n of TBs should be a multiplier of M for
load balancing between MPs. It also should be noted here
that the GPU architecture is designed to hide the memory
latency. This is achieved by concurrently running multiple
TBs on each MP. Since there is no data dependence between
different TBs, each MP is allowed to switch them to perform
computation during a memory fetch operation. To maximize
the effects of this latency hiding, MPs run more TBs as long
as registers and shared memory are available.

B. Periodical Rendering Model

There are two typical rendering models that can be
employed for graphics applications: a periodical model and
a non-periodical model. The former is intended to provide
the same frame rate on any graphics card. For example,

Frame #1 Frame #3Frame #2

Time

t tt

F/1 F/1

Figure 2. Periodical rendering model. Rendering tasks are executed at
regular intervals to produce a series of frames.

PC games and movie players are required to ensure the
same rate to avoid extremely high frame rates per second
(fps). In contrast, the latter executes rendering tasks on the
GPU as fast as possible. A rendering task here corresponds
to the drawing code flushed by the glFlush() function,
which produces a single frame in graphics applications.
On the other hand, a CUDA task in scientific applications
corresponds to a kernel invocation. As we mentioned in
Section I, our method assumes that host applications are
implemented using the periodical model.

Figure 2 shows how the periodical model produces a
series of frames. In this model, rendering tasks are executed
at regular intervals. The intervals are given by 1/F , where F
denotes the frame rate needed for the graphics application.
Let t be the time spent for producing a frame. The idle
period W between frames then can be represented by

W = 1/F − t. (1)

According to the model mentioned above, the frame rate
F can be decreased if W < 0. One problem here is that
the time t cannot be directly measured in grid environments
because it is not realistic to obtain and modify the source
code of arbitrary host applications. It is important to take this
constraint into account when developing grid middleware.

III. PROPOSED MULTITASKING METHOD

Figure 3 illustrates how guest and host applications are
executed under the periodical rendering model. According
to our preliminary experiments, we find that rendering tasks
and CUDA tasks are always executed in exclusive mode.
That is, the GPU switches tasks when the current kernel
completes its execution. Therefore, rendering tasks can be
delayed or cancelled if a scientific task occupies the GPU
for long time, as shown in Fig. 3(a).

To solve this problem, we have to control the execution
time of guest kernels such that the host application can
process a rendering task at every time 1/F . Figure 3(b)
illustrates how our cooperative method realize efficient mul-
titasking on the GPU. The proposed method consists of two
strategies as follows.

1) Task division. The method divides guest tasks into
smaller subtasks such that each kernel completes its
execution within the idle period W .

2) Alternative execution. The method invokes the scien-
tific kernel at almost the same intervals as the host
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Figure 3. Timeline view of multi-task execution on the GPU. (a) A
naive method will drop the frame rate but (b) our method prevents this
performance degradation. The proposed method divides each of scientific
tasks into smaller subtasks, which are then serially processed at regular
intervals.

application. This prevents resource starvation because
host and guest applications are given equal chances to
use the GPU.

Note that our method requires code modifications of guest
applications. In contrast, there is no need to modify the
code of graphics applications that run as host applications
on grid resources. This is essential to run the method in
grid environments, where there can be a large number of
host applications and their code is not allowed to edit. In
this sense, the method provides a realistic solution to the
problem of multitasking in grid environments.

A. Task Division

We now explain how task division can be done for CUDA-
based applications. As we mentioned in Section II-A, there is
no data dependence between different TBs. Therefore, our
method divides the original task into smaller subtasks by
simply reducing the number n of TBs given to the CUDA
kernel. In addition to this task division, it serially invokes
the kernel with changing TBs to obtain the same results as
before.

Our division strategy has an advantage in code modifi-
cation. Firstly, we use the same TB size as the original
code. This means that kernel optimization inherent in TBs
is kept as the original. For example, we do not have to
concern about reducing the degree of parallelism available
in each TB. One exception is that the memory latency
hiding mentioned in Section II-A can be cancelled due to
the reduced number of TBs. The second advantage is that

OriginalMatrixMultiplication()
1: // setup execution parameters
2: dim3 threads(BLOCK SIZE, BLOCK SIZE);
3: dim3 grid(WC / threads.x, HC / threads.y);
4: // execute the kernel
5: matrixMul<<< grid, threads >>>(d C, d A, d B, WA, WB);

global void
marixMul(float *C, float *A, float *B, int wA, int wB) {

6: // Block index
7: int bx = blockIdx.x;
8: int by = blockIdx.y;
9: ... // omitted

10: }

(a)

ModifiedMatrixMultiplication(GRID YSIZE)
1: // setup execution parameters
2: dim3 threads(BLOCK SIZE, BLOCK SIZE);
3: dim3 grid(WC / threads.x, GRID YSIZE);
4: // execute the kernel
5: for (int i=0; i<HC / threads.y / GRID YSIZE; i++) {
6: matrixMul<<< grid, threads >>>

(d C, d A, d B, WA, WB, i*GRID YSIZE);
7: cudaThreadSynchronize();
8: Sleep(1/F );
9: }
global void

marixMul(float *C, float *A, float *B, int wA, int wB,
int offset) {

10: // Block index
11: int bx = blockIdx.x;
12: int by = offset + blockIdx.y;
13: ... // omitted
14: }

(b)

Figure 4. Example of guest code modifications. (a) The original code
[3] for matrix multiplication C = AB and (b) the modified code for
cooperative multitasking. WC and HC represent the width and the height
of matrix C. The input parameter GRID YSIZE determines the number of
TBs.

almost all of the original kernel code can be reused after
task division. The modification only needed is that we have
to add an offset as a kernel argument and have to specify
the appropriate address of output data by using the offset.

Figure 4 shows an example of code modifications. It
explains how matrix multiplication C = AB can be
adapted to cooperative multitasking. In this example, the
original code [3] in Fig. 4(a) generates (WC/BLOCK SIZE)
× (HC/BLOCK SIZE) TBs, where BLOCK SIZE is the
size of TBs, and WC and HC represent the width
and the height of matrix C. On the other hand, the
modified code in Fig. 4(b) reduces this number to
(WC/BLOCK SIZE) × GRID YSIZE TBs, as shown in
line 3, where 1 ≤ GRID YSIZE ≤ HC/BLOCK SIZE.
Parameter GRID YSIZE here represents the number of TBs
in y direction. This parameter can be given to the CPU code
to change the granularity of subtasks at run-time.

Let K (> 0) and k (≤ K) be the execution time of the
original task and that of a divided subtask, respectively. In
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general, the kernel workload is proportional to the number
n of TBs. Therefore, our method assumes that the execution
time K can be represented by

K = Bdn/Me, (2)

where B represents the time needed for processing a single
TB on an MP. In optimized kernels, we can assume that
n À M and n ≡ 0 (mod M ). Suppose that the original
kernel takes long time such that K > W . In this case, we
divide the original task into dK/W e subtasks in order to
satisfy k ≤ W . Notice that this estimation is not precise
because MPs can run multiple TBs at a time.

B. Alternative Execution

Although each of subtasks completes its execution within
the idle period W , the frame rate of the graphics application
can drop if guest subtasks are continuously executed on the
GPU. To prevent guest subtasks from occupying the GPU,
our method tries to ensure that at least a rendering task is
processed between successive guest subtasks.

Such alternative execution requires synchronization be-
tween host and guest applications, because they are inde-
pendently executed in grid environments. However, it is
not realistic to develop a synchronization mechanism for
arbitrary combinations of graphics applications and scientific
applications. Therefore, our method invokes the guest kernel
at almost the same intervals as the graphics application. This
can be simply realized by calling a sleep function between
guest kernel calls, as shown at line 8 in Fig. 4(b). The sleep
function then sleeps time 1/F , so that at least a frame will be
produced before the next call of the guest kernel, as shown in
Fig. 3(b). Note that we must call cudaThreadSynchronize()
before calling the sleep function because CUDA kernels are
currently launched in an asynchronous, non-blocking mode
[3]. Otherwise, CUDA kernels can be continuously executed
between successive frames.

For the sleep function, we currently use Sleep() provided
by Windows API [11]. This has an advantage over a naive
implementation that enters a busy loop because Sleep()
allows the guest process to move to the waiting state.
However, we need an accurate sleep mechanism with 1-ms
resolution to deal with graphics applications with a higher
frame rate F ranging from 30 fps to 60 fps. On the other
hand, the resolution of Sleep() depends on that of hardware
timer and the time slice of operating system. For example,
Windows XP has the default value of 15 ms if it runs on
multiple CPUs. To obtain an accurate sleep, our method
increases the rate of context switches by altering the time
quantum from 15 ms to 1 ms. This alternation can be done
using timeBeginPeriod() and will be done if and only if
guest applications are allocated to the GPU. Due to the same
reason, some PC games might change the time quantum
when they are executed as host applications.

Table I
SPECIFICATION OF EXPERIMENTAL MACHINES.

Item Machine #1 Machine #2
Operating system Windows XP Windows 7
CPU Core 2 Duo Xeon W3520
GPU GeForce 8800 GTS (G80) GeForce GTX 280
CUDA 1.1 2.3
Driver 169.21 191.07
Desktop resolution 1280 × 1024 pixels 1920 × 1080 pixels

IV. EXPERIMENTAL RESULTS

We now show experimental results to understand the
effects of the proposed method. For experiments, we used
two desktop PCs, as shown in Table I. One is equipped
with an Intel Core 2 Duo CPU running at 1.86 GHz. This
machine has an NVIDIA GeForce 8800 GTS (G80) card
with M = 12. We have installed Windows XP, CUDA 1.1,
and graphics driver 169.21. The other one has an Intel Xeon
W3520 CPU running at 2.66 GHz. This machine has an
NVIDIA GeForce GTX 280 card with M = 30. We have
installed Windows 7, CUDA 2.3, and graphics driver 191.07.

With respect to guest applications, we used two appli-
cations. One is matrix multiplication [3] and the other
is biological sequence alignment [12]. The former solves
the problem with the matrix size of 2048 × 2048. During
execution, the kernel generates n = 16, 384 TBs, each con-
sisting of 16× 16 threads. The latter implements the Smith-
Waterman algorithm [13] to perform sequence alignment
between a database of 250,143 entries and a query sequence
of length 512. The kernel generates n = 250, 143 TBs with
thread block size 128. Both guest applications are manually
modified for the proposed method.

On the other hand, a phong shader [14] is employed as
a host application. This shader is implemented using the
OpenGL library [10] with the periodical rendering model.
Since the shader runs at F = 60 fps, the sleeping time 1/F
is set as 17 ms in experiments.

A. Overhead of Task Division

We first confirm that our task division strategy controls the
execution time k of a subtask. Table II shows the measured
time k of matrix multiplication with varying the number d of
task divisions. We can see that the time k varies according
to the number d of task divisions, i.e., the number n of
TBs. For example, the original kernel takes K = 299.9 ms
to complete matrix multiplication but the execution time is
reduced to 2.4 ms if the task is divided into 128 subtasks
(d = 128). Furthermore, the time k is proportional to the
number n, as we modeled in Eq. (2). Therefore, we can
easily control the time k if the original time K = 299.9 is
given to the grid system.

With respect to the overhead of task division, the overhead
reveals when d = 128. In this case, the effective performance
reduces from 57.3 GFLOPS to 55.9 GFLOPS, which is
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Table II
EXECUTION TIME OF MATRIX MULTIPLICATION WITH DIFFERENT

NUMBERS OF TASK DIVISIONS. PERFORMANCE IS MEASURED USING
MACHINE #1.

d: # of task k: kernel time (ms) Performance (GFLOPS)
divisions Measured Estimated Kernel Kernel w/ wait

1 (original) 299.9 299.9 57.3 57.3
4 75.0 75.0 57.3 44.5
8 37.5 37.5 57.3 37.9
16 18.8 18.7 57.1 28.9
32 9.4 9.4 57.1 31.6
64 4.8 4.7 57.1 15.8
128 2.4 2.3 55.9 7.9

equivalent to 2.4% performance drop. The effective per-
formance here is given by 2N3/dk, where 2N3 represents
the number of floating-point operations needed for matrix
multiplication of size N . Thus, the overhead is small for
matrix multiplication. Note here that the entire guest per-
formance can be further reduced from this value due to the
sleeping time 1/F . Table II also shows another effective
performance, 2N3/d(k + w), which explains the impact of
this waiting overhead. For example, the entire performance
results in 7.9 GFLOPS when d = 128 though the kernel
performance itself reaches 55.9 GFLOPS.

In summary, our task division strategy is useful to control
the execution time k of a subtask. It has a lower overhead but
the waiting overhead dw will reduce the entire performance
of guest applications.

B. Performance of Multitasking

Figure 5 shows the frame rate of the phong shader and the
relative throughput of matrix multiplication, explaining how
the host and guest application performance vary according
to the execution time k per kernel invocation, i.e., the
number d of task divisions. The relative throughput of 1.0
here corresponds to the maximum performance measured
on dedicated machine #1. The frame rate is shown in
average. Obviously, there is a tradeoff relation between the
host performance and the guest throughput. For example,
the host performance will be maximized when the task is
decomposed into many subtasks. However, we can see that
a throughput of 0.35 can be achieved without degrading the
rendering performance. Furthermore, the throughput reaches
0.5 if resource owners accept 10% performance loss (54
fps, in this case). Thus, we can obtain 50% of dedicated
performance in a non-dedicated environment.

We also investigated the effect of the alternative execution
strategy, as shown in Fig. 5. We obtain higher, stable frame
rates by calling the sleep function. For example, the frame
rate reaches 54 fps when k = 18.8 but it reduces to 26 fps
if we do not call the sleep function. Accordingly, the kernel
throughput increases from 0.5 but the frame rate becomes
unstable. For example, the rate ranges from 51 fps to 57 fps
if we call the sleep function. In contrast, it ranges from 23
fps to 39 fps if we do not call the function. In this sense, the
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Figure 5. Frame rate of phong shader and throughput of matrix multipli-
cation with different task granularities. Results are obtained on machine #1
and are shown in average.

sleep function plays an important role in achieving smooth
rendering for host applications.

Finally, Fig. 6 shows the frame rate of the phong shader,
the relative throughput of matrix multiplication and that of
biological sequence alignment. These results are measured
on machine #2. There are two differences in Fig. 6(a), as
compared with results on machine #1 (Fig. 5). Firstly, we
observe lower frame rates on machine #2 though it has
higher performance than machine #1. For example, the frame
rate at k = 24 is approximately 30 fps in Fig. 6(a), which
is 44% lower than that at k = 18.8 in Fig. 5. Secondly, the
effects of the sleep function is reduced when k ≥ 24. We
think that these differences are due to the difference between
Windows XP and Windows 7. The latter has a hardware-
based graphical user interface (GUI) called Windows Aero.
This GUI is implemented using the DirectX graphics library
[9]. Therefore, there are two host applications on machine
#2: the phong shader and the Windows Aero.

We also find similar results for biological sequence align-
ment, as shown in Fig. 6(b). As compared with matrix
multiplication results, we obtain slightly higher frame rates
when running this biological application. It differs from
matrix multiplication in that the performance is limited by
the instruction issue rate rather than the memory bandwidth.
Therefore, the frame rate can be increased if host and guest
application have different performance bottlenecks.

V. CONCLUSION

We have presented a cooperative multitasking method
capable of simultaneously running a graphics kernel and a
CUDA kernel on a single GPU. In order to control the frame
rate of the graphics application, our method divides CUDA
tasks into smaller subtasks such that each subtask can be
completed within an idle period. Furthermore, the method
calls a sleep function for every kernel invocation to avoid
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Figure 6. Frame rate of phong shader and throughput of guest applications with different task granularities. (a) matrix multiplication and (b) biological
sequence alignment. Results are obtained on machine #2 and are shown in average.

resource starvation due to continuous execution of CUDA
kernels.

In experiments, we have shown that the method success-
fully controls the frame rate of host applications and the
throughput of guest applications. Our multitasking execution
achieves 35% of guest throughput as compared with exclu-
sive execution. This throughput is achieved without dropping
the original frame rate of 60 fps. The throughput increases
to 50% if host users accept 10% frame loss.

One future work is to extend the method for non-
periodical applications, which dynamically vary the frame
rate.
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