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Abstract

Compute unified device architecture (CUDA) is a software development platform that
allows us to run C-like programs on the nVIDIA graphics processing unit (GPU).
This paper presents an acceleration method for cone beam reconstruction using CUDA
compatible GPUs. The proposed method accelerates the Feldkamp, Davis, and Kress
(FDK) algorithm using three techniques: (1) off-chip memory access reduction for
saving the memory bandwidth; (2) loop unrolling for hiding the memory latency; and
(3) multithreading for exploiting multiple GPUs. We describe how these techniques
can be incorporated into the reconstruction code. We also show an analytical model
to understand the reconstruction performance on multi-GPU environments. Experi-
mental results show that the proposed method runs at 83% of the theoretical memory
bandwidth, achieving a throughput of 64.3 projections per second (pps) for reconstruc-
tion of 5123-voxel volume from 360 5122-pixel projections. This performance is 41%
higher than the previous CUDA-based method and is 24 times faster than a CPU-based
method optimized by vector intrinsics. Some detailed analyses are also presented to
understand how effectively the acceleration techniques increase the reconstruction per-
formance of a naive method. We also demonstrate out-of-core reconstruction for large-
scale datasets, up to 10243-voxel volume.

Key words: Cone beam reconstruction, acceleration, GPU, CUDA

1. Introduction

Cone beam (CB) reconstruction is an imaging technique for producing a three-
dimensional (3-D) volume that gives us insight of patients for clinical purposes. This
technique generates volume data from a series of 2-D projections acquired by a com-
puted tomography (CT) scan with a flat-panel detector. For the sake of surgical assis-
tance, the technique is usually integrated into mobile C-arm CT systems to help the
operator during image-guided surgery. Since the surgical procedure has to be stopped
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until the end of the reconstruction procedure, a reconstruction task should be com-
pleted within 10 seconds to minimize such interrupted time. However, it takes at least
3 minutes to obtain a 5123-voxel volume on a single 3.06 GHz Xeon processor [1].
Accordingly, many researchers are trying to accelerate CB reconstruction using var-
ious accelerators, such as the graphics processing unit (GPU) [2, 3, 4, 5, 6, 7], Cell
Broadband Engine (CBE) [1], and field programmable gate array (FPGA) [8].

Among the accelerators mentioned above, the GPU [9] and the CBE [10] are
commodity chips designed to accelerate multimedia applications such as gaming and
computer-aided design (CAD) systems. However, these chips can provide a low-cost
solution to compute-intensive problems not only in multimedia area but also in medical
area [11, 12]. Actually, as far as we know, the fastest CB reconstruction is presented
by Scherl et al. [3]. They develop a GPU-accelerated reconstruction using compute
unified device architecture (CUDA) [13], which enables us to run C-like programs on
the nVIDIA GPU. A reconstruction task of a 5123-voxel volume from 414 10242-pixel
projections takes 12.02 seconds on an nVIDIA GeForce 8800 GTX, namely a high-end
graphics card.

In contrast to this non-graphics based approach, a graphics based approach is pro-
posed by many researchers [2, 4, 14]. Using the OpenGL graphics library [15], their
implementation runs as a graphics application but realizes real-time reconstruction.
It takes 8.1 seconds to reconstruct a 5123-voxel volume from 360 5122-pixel projec-
tions [14], which is only 1% slower than the non-graphics based approach [3]. Thus,
it is still not clear whether the CUDA-based approach is significantly faster than the
graphics-based approach, though the CUDA platform is designed for general purposes
rather than graphics purposes. In particular, optimization techniques are of great inter-
est to computational scientists, because such techniques determine the performance of
CUDA programs.

In this paper, we propose a CUDA-based method for accelerating CB reconstruc-
tion on nVIDIA GPUs. Our main goal is to present key optimization techniques that
enable the CUDA-based approach to achieve higher reconstruction performance than
the graphics-based approach. We extend our preliminary work [16] by developing a
multithreading mechanism capable of exploiting multiple GPUs on a single desktop
PC. Our method is based on the Feldkamp, Davis, and Kress (FDK) reconstruction
algorithm [17], which is used in many prior projects [1, 2, 3, 4, 5, 6, 7, 8, 18]. We
optimize the method using three acceleration techniques: (1) off-chip memory access
reduction for saving the bandwidth of video memory; (2) loop unrolling for hiding
the memory latency with data-independent computation; and (3) multithreading for
exploiting multiple GPUs. We also show how effectively these techniques contribute
to higher performance, making it clear that the memory bandwidth mainly limits the
performance of the proposed method. Furthermore, an analytical model is presented to
understand the reconstruction performance on multi-GPU environments.

The rest of the paper is organized as follows. We begin in Section 2 by introducing
related work. Section 3 gives a brief summary of CUDA and Section 4 shows an
overview of the FDK algorithm. Section 5 describes our CUDA-based method and
Section 6 presents experimental results. Finally, Section 7 concludes the paper.
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2. Related Work

A naive solution to accelerate heavy computation is to employ a cluster computing
approach [19, 20, 21] that runs applications on multiple PCs. However, the advances in
integrated circuits (ICs) make it possible to implement hundreds of processing elements
into a single IC chip. For example, the GPU currently has at least 128 processing
elements on a single card, reducing the energy consumption with the physical size.
These characteristics are desirable for surgical environments, where systems have to
be robust against power failures.

To the best of our knowledge, the basic idea of graphics-based implementations has
been introduced by Cabral et al. [22] who firstly used texture mapping hardware for CB
reconstruction. This texture-based idea is then extended by Mueller and Xu [23, 24]
to implement various reconstruction methods on the GPU: the FDK algorithm [17];
ordered subsets expectation maximization (OSEM) [25]; and simultaneous algebraic
reconstruction technique (SART) [26]. Since their work is done before the dawning of
CUDA, their methods are implemented using graphics libraries such as OpenGL [15]
and C for graphics (Cg) [27].

Xu et al. [2] finally propose an OpenGL-based method that maps the FDK algo-
rithm onto the graphics pipeline [11] in the GPU. Their graphics-based approach has
an advantage over CUDA-based methods in terms of using graphics optimization tech-
niques. For example, they realize a load balancing scheme by moving instructions from
fragment processors to vertex processors, each composing a stage of the pipeline [11].
This code motion technique also reduces the computational complexity [28]. Further-
more, their method uses the early fragment kill (EFK) technique to restrict computation
to voxels within the region of interest (ROI). Although this fragment culling technique
achieves further acceleration, we cannot obtain the correct data outside the ROI, where
fragments are culled from rendering. In contrast, our goal is to achieve rapid recon-
struction for the entire volume. Another graphics-based implementation is proposed
by Riabkov et al. [4].

Scherl et al. [3] show a CUDA-based method with a comparison to a CBE-based
method. They claim that their method reduces the number of instructions and the us-
age of registers. On the other hand, our acceleration techniques focus on reducing the
amount of off-chip memory accesses and on hiding the memory latency with computa-
tion. We think that such memory optimization is important to improve the performance
of the FDK algorithm, which can be classified into a memory-intensive problem. A
similar approach is proposed by Noël et al. [7] who use on-chip shared memory to
save the bandwidth of off-chip memory. Although this is important for many scientific
applications, shared memory does not have a fast interpolation mechanism, which im-
proves the reconstruction quality. On the other hand, our method uses texture memory,
which provides a hardware-accelerated interpolation mechanism to offload processing
elements. Yang et al. [18] develop a fast backprojection method for CB reconstruction.
Their CUDA-based method takes 4.7 seconds to perform backprojection of 360 6002-
pixel projections into a 5123-voxel volume. Our method differs from their work in that
the method accelerates the entire FDK algorithm. With respect to the backprojection
performance, our method achieves slightly higher performance than their method.

In contrast to the implementation-level optimization mentioned above, rebinning
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Figure 1: Architecture of CUDA-enabled GPU. There are roughly two groups of memory on a graphics card.
On-chip (shared) memory is almost fast as registers. On the other hand, off-chip (device) memory takes 400–
600 clock cycles to fetch/store data. A GeForce 8800 GTX card has MS = 16 ·8 = 128 stream processors,
where M and S represent the number of multiprocessors and that of stream processors, respectively.

algorithms [29, 30] convert the geometry to perform optimization at the algorithm level.
For example, rebinning from CB projections to parallel beam projections simplifies the
backprojection operation needed for the FDK reconstruction. One drawback of this
rebinning strategy is that it can create artifacts in the final volume.

The main contribution of this paper is to show key optimization techniques that are
essential to achieve the full reconstruction performance on CUDA compatible GPUs.
We also show that our effective performance is reasonable in terms of the theoretical
performance rather than the relative performance over CPU-based methods.

3. Overview of Compute Unified Device Architecture (CUDA)

CUDA [13] is a development platform designed for writing and running general-
purpose applications on the nVIDIA GPU. Similar to graphics applications, CUDA ap-
plications can be accelerated by data-parallel computation [31] of millions of threads.
A thread here is an instance of a kernel, namely a program running on the GPU. The
main advantage of this platform is that it allows us to regard the GPU as a single in-
struction, multiple data (SIMD) parallel machine [31] rather than graphics hardware.
Thus, there is no need to understand the graphics pipeline to execute programs on this
highly-threaded architecture. It also should be noted that CUDA exposes the mem-
ory hierarchy to developers, allowing them to maximize application performance by
optimizing data access.

Figure 1 illustrates the architecture of the CUDA compatible GPU. The GPU is
implemented on a graphics card with video memory, called device memory. Since this
off-chip memory is separated from the GPU, it takes at least 400 clock cycles to fetch
data from that memory. The GPU consists of M multiprocessors (MPs), each having S
stream processors (SPs). Every MP has small on-chip memory, called shared memory,
which can be accessed from internal SPs as fast as registers. However, this memory
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is not shared between different MPs. Due to this constraint, threads are classified
into groups and each group is called as a thread block (TB), which is the minimum
allocation unit assigned to an MP. Therefore, developers have to write their code such
that there is no data dependence between threads in different TBs. On the other hand,
threads in the same TB are allowed to have data dependence because they can exchange
data using shared memory. The consistency of shared data must be kept by application
developers using a synchronization function.

As shown in Fig. 1, off-chip memory consists of texture memory, constant memory,
local memory, and global memory. Texture memory and constant memory have a cache
mechanism but they are not writable from SPs. Therefore, developers are needed to
transfer (download) data from main memory in advance of a kernel invocation. Texture
memory differs from constant memory in that it provides a hardware mechanism that
returns linearly interpolated texels from the surrounding texels. This hardware is called
as the texture unit, which is separated from SPs. On the other hand, local memory and
global memory are writable from SPs but they do not have a cache mechanism. Global
memory achieves almost the full memory bandwidth if data accesses can be coalesced
into a single access [13]. Local memory cannot be explicitly used by developers. This
memory space is implicitly used by the CUDA compiler in order to avoid resource
consumption. It is better to eliminate such inefficient accesses hidden in the kernel
code because local memory cannot be accessed in a coalesced manner. For example,
an array will be allocated to local memory if it is too large for register space.

In most applications, assigning multiple TBs to every MP is important to hide the
latency of device memory. This is due to the architectural design of the GPU, which
switches the current TB to another TB when it has to wait for data from device memory.
To realize such latency hiding, we must write the kernel code such that it minimizes the
usage of shared memory and registers, because such resource usage limits the number
of concurrent TBs. Note here that this does not always apply to all cases especially if
the kernel code should use texture memory (as shown later in Section 6).

4. Feldkamp, Davis, and Kress (FDK) Reconstruction

Consider a reconstruction task that produces an N3-voxel volume F from a series
of U × V -pixel projections P1, P2, . . . , PK obtained by a scan rotation of a detector.
The FDK algorithm [17] solves this problem by two processing stages: the filtering
stage and the backprojection stage. At the filtering stage, the algorithm applies the
Shepp-Logan filter [32] to each projection Pn to obtain filtered projection Qn, where
1 ≤ n ≤ K. This filter gives a smoothing effect to minimize noise propagation during
the succeeding backprojection stage. Let Pn(u, v) and Qn(u, v) be the pixel value at
point (u, v) of Pn and that of Qn, respectively, where 1 ≤ u ≤ U and 1 ≤ v ≤ V . The
filtering stage converts Pn(u, v) to Qn(u, v) such that:

Qn(u, v) =
R∑

r=−R

2
π2(1 − 4r2)

W1(r, v)Pn(r, v), (1)
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Figure 2: Coordinate system for backprojection. The xyz space represents the volume while the uv plane
represents a filtered projection that is to be backprojected to the volume.

where R represents the filter size and W1(r, v) represents the weight value given by:

W1(r, v) =
D√

D2 + r2 + v2
, (2)

where D represents the distance between the X-ray source and the origin of the detector
(projection), as shown in Fig. 2.

A series of filtered projections Q1, Q2, . . . , QK are then backprojected to the vol-
ume F . In Fig. 2, the xyz space corresponds to the target volume F while the uv plane
represents the n-th filtered projection Qn that is to be backprojected to volume F from
angle θn, where 1 ≤ n ≤ K. Note here that the distance dn between the X-ray source
and the volume origin should be parameterized for each projection, because it varies
during the rotation of a real detector. On the other hand, distance D can be modeled as
a constant value in C-arm systems.

Using the coordinate system mentioned above, the voxel value F (x, y, z) at point
(x, y, z), where 0 ≤ x, y, z ≤ N − 1, is computed by:

F (x, y, z) =
1

2πK

K∑
n=1

W2(x, y, n)Qn(u(x, y, n), v(x, y, z, n)), (3)

where the weight value W2(x, y, n), the coordinates u(x, y, n) and v(x, y, z, n) are
given by:

W2(x, y, n) =
( dn

dn − x cos θn + y sin θn

)2

, (4)

u(x, y, n) =
D(x sin θn + y cos θn)
dn − x cos θn + y sin θn

, (5)

v(x, y, z, n) =
Dz

dn − x cos θn + y sin θn
. (6)

The coordinates u(x, y, n) and v(x, y, z, n) here are usually real values rather than inte-
ger values. Since projections P1, P2, . . . PK are given as discrete data, an interpolation
mechanism is essential to obtain high-quality volume.

6



Projections

Volume

1. Download of projections

2. Filtering

4. Repeat steps 1.-3.
3. Backprojection

5. Readback of volume
Volume

Projections

Filtered Projections

GPU #1

CPU
GPU #2

GPU #C

Figure 3: Overview of the proposed method. Projections are serially sent to the GPU in order to accumulate
their pixels into the volume in video memory.

5. Proposed Method

We now describe our CUDA-based method that runs on a multi-GPU environment.
We first present data distribution and parallelization strategies and then explain how
the backprojection performance can be maximized on the GPU. An analytical model is
also presented to analyze the theoretical performance of our method.

5.1. Data Distribution and Parallelization

Equation (3) indicates that there is no data dependency between different voxels as
well as between different projections. Therefore, voxels can be independently assigned
to different GPUs for parallel backprojection. In addition, the backprojection operation
in Eq. (3) has an associativity that allows us to process projections in an arbitrary order.
Thus, projections as well as voxels can be processed in parallel. This full parallelism
means that the volume and projections can be arbitrary divided into small portions
without significant performance degradation because it does not need data exchange
between SPs during parallel backprojection.

It is not easy for commodity graphics cards to store both the entire volume and pro-
jections in device memory, because a 5123-voxel volume consumes at least 512 MB
of memory space. Therefore, either the volume data or the projection data must be
divided into small portions and then be transferred from main memory to device mem-
ory when needed. We have decided to store the volume data rather than the projection
data in device memory, because each projection can be removed immediately after its
backprojection. In other words, this decision allows us to structure the reconstruction
procedure into a pipeline that can return the volume immediately after the end of a scan
rotation. Figure 3 shows an overview of our reconstruction method. The method sends
a series of projections to global memory, which is then filtered and backprojected into
the volume in global memory. This operation is iteratively applied to the remaining
projections to obtain the final accumulated volume.
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Figure 4: Two parallelization schemes. (a) Projection parallelism scheme and (b) voxel parallelism scheme.
The former scheme involves volume composition to obtain the final volume. Instead of this, the latter scheme
involves subvolume concatenation.

With respect to the parallelization scheme, there can be two variations for multi-
GPU environments, as shown in Fig. 4. Let C be the number of GPUs. The first one
is the projection parallelism scheme, which assigns K/C projections to each GPU. As
shown in Fig. 4(a), this scheme produces C volumes after backprojection, which must
be composited into a single volume at the final stage. The other one is the voxel par-
allelism scheme, which assigns all K projections to GPUs but each GPU generates the
responsible portion of the volume as shown in Fig. 4(b). Thus, the difference to the for-
mer scheme is that the latter scheme directly generates subvolumes of the final volume.
Therefore, the voxel parallelism scheme does not require the final composition stage
but involves concatenation of C subvolumes into a single volume. This concatenation
overhead is smaller than the composition overhead needed for the former scheme. We
discuss on the pros and cons of each scheme later in Section 5.3.

Figure 5 shows a pseudocode for the proposed method. In Fig. 5, the filtering stage
is parallelized in the following way. Equation (1) indicates that this stage performs a
1-D convolution in the u-axis direction. Thus, there is no data dependence between
different pixels in a filtered projection Qn. However, pixels in the same row v refer
partly the same pixels in projection Pn: Pn(r, v), where −R ≤ r ≤ R. Therefore,
it is better to use shared memory to save the memory bandwidth for such commonly
accessed pixels. Thus, we have decided to write the filtering kernel such that a TB is
responsible for a row in Qn. On the other hand, a thread is responsible for computing a
pixel in the row. As shown in Fig. 5, threads in the same TB cooperatively copy a row
v to shared memory at line 24, which are then accessed instead of the original data in
global memory at line 26.

Note that the filtered projection data is accessed as textures during backprojection
(line 14). As we mentioned in Section 4, the coordinates u(x, y, n) and v(x, y, z, n) are
usually real values. Therefore, we load the data Qn(u, v) from a texture, which returns
a texel value interpolated by hardware. This strategy contributes to a full utilization of
the GPU, because the interpolation hardware is separated from processing units.
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5.2. Accelerated Backprojection

As we mentioned earlier, there is a full parallelism in the backprojection stage.
Therefore, a naive solution may assign every voxel to different threads. However,
this is not a good strategy because some computational results can be reused between
different voxels. For example, Eqs. (4) and (5) indicate that W2(x, y, n) and u(x, y, n)
do not depend on z. Such a z-independent computation should be assigned to the same
thread in order to perform data reuse for complexity reduction. Furthermore, this data
reuse technique can also be applied to reduce the complexity of Eq. (6). Although
v(x, y, z, n) depends on z, it can be rewritten as
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Input: Projections P1 . . . PK , filter size R and parameters D, d1 . . . dK , θ1 . . . θK , I, J
Output: Volume F
Algorithm Reconstruction()

1: Initialize volume F ;
2: float G[R + 1];
3: for r = 0 to R do
4: G[r] ← 2/(π2(1 − 4r2)); // precomputation for filtering
5: end for
6: Transfer array G to constant memory;
7: n ← 1;
8: while n≤K do
9: for i = 0 to IJ − 1 do

10: dn[i] ← dn+i;
11: θn[i] ← θn+i;
12: Transfer projection Pn+i to global memory;
13: Q[i] ← FilteringKernel(Pn+i, R);
14: Bind filtered projection Q[i] as a texture;
15: end for
16: F ← BackprojectionKernel(Q[IJ], D, dn[IJ], θn[IJ], n);
17: n ← n + IJ ;
18: end while
19: Transfer volume F to main memory;
Function FilteringKernel(P, R)
20: shared float array[U ]; // U : projection width
21: u ← index(threadID); // returns responsible u
22: v ← index(blockID);
23: Initialize Q(u, v);
24: array[u] ← W1(u, v) ∗ P (u, v);
25: for r = −R to R do // unrolled
26: Q(u, v) ← Q(u, v) + G[|r|] ∗ array[u + r];
27: end for
Function BackprojectionKernel(Q[IJ], D, dn[IJ], θn[IJ], n)
28: var u[I], v[I], v′[I], w[I];
29: x ← index(blockID, threadID);
30: y ← index(blockID, threadID);
31: for j = 0 to J − 1 do // unrolled
32: for i = 0 to I − 1 do
33: w[i] ← W2(x, y, Ij + i + n); // Eq. (4)
34: u[i] ← u(x, y, Ij + i + n); // Eq. (5)
35: v[i] ← v(x, y, 0, Ij + i + n); // Eq. (6)
36: v′[i] ← v′(x, y, Ij + i + n); // Eq. (8)
37: end for
38: for z = 0 to N − 1 do
39: F (x, y, z) ← F (x, y, z) + w[0] ∗ Q[Ij](u[0], v[0])

+w[1] ∗ Q[Ij + 1](u[1], v[1])
· · ·
+w[I − 1] ∗ Q[Ij + I − 1](u[I − 1], v[I − 1]);

40: for k = 0 to I − 1 do
41: v[k] ← v[k] + v′[k];
42: end for
43: end for
44: end for

Figure 5: Pseudocode of the proposed method. The CPU iteratively invokes two kernels that run on the GPU
to perform filtering and backprojection of IJ projections at a time. Loops are not unrolled in this code for
the simplicity of explanation.

v(x, y, z, n) = v′(x, y, n)z, (7)

where
v′(x, y, n) =

D

dn − x cos θn + y sin θn
. (8)
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Figure 6: Thread block organization. (a) Our method structures thread blocks into squares to achieve higher
locality of data access. (b) Otherwise, texels can be fetched from a wider region of the filtered projection,
reducing the hit ratio of texture caches. A thread is responsible for z-axis aligned voxels.

Therefore, we can precompute v′(x, y, n) for any z (line 36), in order to incrementally
compute Eq. (6) at line 41. In summary, a thread is responsible for z-axis aligned
voxels: voxels (X,Y, 0), (X,Y, 1), . . . , (X,Y,N − 1), where 0 ≤ X,Y ≤ N − 1. On
the other hand, a TB is responsible for a set of such aligned voxels.

Figure 6 illustrates how we organize threads into a TB. As shown in Fig. 6(a),
we structure TBs into squares to maximize the cache efficiency. Such closely located
voxels can be projected into a small region of a projection. Therefore, it improves
the locality of texture accesses, increasing the cache hit ratio as compared with other
organizations. The TB size is mainly determined by hardware limitation such as the
number of available registers. We currently structure 16 × 16 threads into a TB on the
GeForce 8800 GTX card. We also store the volume data in global memory so that the
memory accesses can be coalesced into a single contiguous, aligned memory access
[13].

Finally, we explain how our method maximizes the effective memory bandwidth to
accelerate the memory-intensive backprojection operation. We maximize the effective
bandwidth by two techniques which we mentioned in Section 1.

1. Off-chip memory access reduction. We write the kernel such that it performs
backprojection of I projections at a time, where I (≥ 2) represents the number of
projections processed by a single kernel invocation. This technique reduces the
number of global memory accesses to 1/I because it allows us to write temporal
voxel values to registers before writing the final values to global memory, as
shown at line 39 in Fig. 5. Note that it requires more registers as we increase the
value of I . We currently use I = 3, which is experimentally determined for the
target GPU.

2. Loop unrolling. As shown in Fig. 5, we pack J successive kernel calls into a
single call by unrolling the kernel code. A kernel invocation now processes every
I projections J times. This modification is useful to hide the memory latency
with data-independent computation. For example, if SPs are waiting for memory
accesses needed for the first I projections, they can perform computation for the
remaining I(J − 1) projections if there is no data dependence between them.
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Table 1: Time complexity and space complexity of the proposed method. Space complexity is presented as
per GPU.

Complexity Stage
Filtering Backprojection

-based scheme -based scheme
Download O(KUV ) O(KUV C)

Time
Filtering O(KUV/C) O(KUV )
Backprojection O(KN3/C) O(KN3/C)
Readback O(N3C) O(N3)
Post-processing O(N3C) O(C)

Space — O(N3) O(N3/C)

In general, the compiler assists this overlap by using different registers to avoid
causing data dependence between unrolled sentences. As we did for I , we have
experimentally decided to use J = 2.

5.3. Analytical Performance Model

We present an analytical model to understand the performance of our parallelization
schemes. This model assumes serial data transfer between main memory and video
memory. Actually, current graphics driver cannot exchange data with multiple graphics
cards at the same time.

Table 1 shows the time and space complexities for each parallelization scheme. The
space complexity is presented as per GPU. The time complexity can be explained as
follows.

1. Download stage. The projection parallelism scheme serially sends K/C projec-
tions to C cards. Since each projection contains UV texels, it takes O(KUV )
time. In contrast, the voxel parallelism scheme sends K projections to C cards.
Therefore, the time complexity is given by O(KUV C).

2. Filtering stage. This stage deals with the same data amount as the download
stage. However, filtering operations are processed in parallel using C cards.
Therefore, the time complexity of this stage is given by dividing that of the
download stage by C.

3. Backprojection stage. This stage is also processed in parallel. The projection
parallelism scheme takes O(KN3/C) time to accumulate values into N3 voxels
K/C times. The voxel parallelism scheme also takes the same O(KN3/C) time
because it processes N3/C voxels K times.

4. Readback stage. Similar to the download stage, this stage is serially processed
by the CPU. The projection parallelism scheme takes O(N3C) time to receive
N3 voxels from C cards. In contrast, the voxel parallelism scheme takes O(N3)
time to receive N3/C voxels from C cards.

5. Post-processing stage. This stage is also serially processed on the CPU. It takes
O(N3C) time to accumulate C volumes into a single volume. On the other hand,
concatenation of C volumes can be processed in O(C) time.
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Figure 7: Sectional views of the Shepp-Logan phantom [32] reconstructed (a) by the GPU and (b) by the
CPU.

The main difference between two schemes is that the voxel parallelism scheme
requires a smaller amount of video memory because it distributes a portion of the vol-
ume to each GPU. This contributes to have smaller overheads in the readback and
post-processing stages. Instead of these advantages, the overheads in the download
and filtering stages are higher than those of the projection parallelism scheme.

6. Experimental Results

We now show experimental results to demonstrate the performance advantages of
the proposed method. To make the explanation easier, we first show an analysis on a
single-GPU environment and then that on a multi-GPU environment. Five previous im-
plementations and results are used for comparison: OpenGL-based methods [2, 14]; a
previous CUDA-based method [3]; a CBE-based method [1]; and a CPU-based method
[1].

For the single-GPU environment, we use a desktop PC equipped with a Core 2
Quad Q6700 CPU, 8GB main memory, and an nVIDIA GeForce 8800 GTX GPU with
768MB video memory. We also use two Tesla C870 cards each with 1.5GB video
memory for the multi-GPU environment. Our implementation runs on Windows XP
64-bit edition with CUDA 1.1 [13] and ForceWare graphics driver 169.21.

Figure 7 shows the Shepp-Logan phantom [32], namely a standard phantom widely
used for evaluation. The data size is given by U = V = N = 512, K = 360, and
R = 256.

6.1. Performance Comparison on Single-GPU Environment

Table 2 shows the execution time needed for reconstruction of the Shepp-Logan
phantom. Since the number K of projections differs from previous results [1, 3], we
have normalized them to the same condition as previous work [1, 2] did in the pa-
per. The proposed method achieves the fastest time of 5.6 seconds, which is 45% and
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Table 2: Performance comparison with previous methods. Throughput is presented by projections per second
(pps).

Method Hardware Execution Throughput
time (s) (pps)

CPU [1] Xeon 3.06 GHz 135.4 2.8
CBE [1] Mercury CBE 19.1 18.8
OpenGL [2] GeForce 8800 GTX 8.9 40.4
OpenGL [14] GeForce 8800 GTX 8.1 44.4
Previous CUDA [3] GeForce 8800 GTX 7.9 45.6
This work Tesla C870 5.8 62.1
This work GeForce 8800 GTX 5.6 64.3

Table 3: Breakdown of execution time on GeForce 8800 GTX.
Breakdown This work (s) Previous CUDA [3] (s)
Initialization 0.1 N/A
Projection download 0.1 0.2
Filtering 0.8 0.7
Backprojection 4.2 6.1
Volume readback 0.4 0.9
Total 5.6 7.9

41% faster than the fastest OpenGL-based method [14] and the previous CUDA-based
method [3], respectively. With respect to the throughput, this performance is equiva-
lent to 64.3 projections per second (pps) while the image acquisition speed in recent CT
scans ranges from 30 to 50 pps [2]. Thus, the performance bottleneck now moves from
the reconstruction stage to the image acquisition stage, making it possible to produce
the entire volume immediately after a scan rotation.

Table 3 shows a breakdown analysis of execution time comparing our method with
the previous CUDA-based method [3]. The main acceleration is achieved at the back-
projection stage. As compared with the previous method, our method processes multi-
ple projections at each kernel invocation in order to reduce the amount of global mem-
ory accesses, as shown at line 39 in Fig. 5. This reduction technique cannot be applied
to the previous method, which deals with a single projection at a time. Since we use
I = 3, the proposed method achieves 67% less data fetches between MPs and global
memory. We also can see that the proposed method transfers the volume two times
faster than the previous method. We think that this is due to the machine employed for
the previous results, because the transfer rate is mainly determined by the chipset.

We next analyze the effective performance of the filtering and backprojection ker-
nels in terms of the computational performance and the memory bandwidth. Figure
8 shows the measured performance with the theoretical peak performance of GeForce
8800 GTX and Tesla C870 cards. Both cards have the same arithmetic performance
but GeForce has 11% higher memory bandwidth than Tesla. The measured values are
determined according to the number of instructions in parallel thread execution (PTX)
code, namely assembly code running on the GPU. For example, the texture unit in
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Figure 8: Effective performance in terms of instruction issue rate, memory bandwidth, and arithmetic per-
formance. (a)–(c) Results on GeForce 8800 GTX and (d)–(f) those on Tesla C870. Theoretical values are
also shown as lines. The theoretical memory bandwidth is given by device memory. The effective memory
bandwidth can be higher than the theoretical value due to cache effects.

the GPU processes 13KN3 operations in total, because textures are accessed KN3

times during backprojection and a texture access involves 13 floating-point operations
to obtain an interpolated texel [13].

Figure 8 indicates that the instruction issue rate limits the performance of the filter-
ing kernel. Due to this performance bottleneck, the floating point performance results
in 91.3 GFLOPS, which is equivalent to 18% of the peak performance. On the other
hand, the effective memory bandwidth reaches 337 GB/s, which is higher than the the-
oretical value. This is due to the fast shared memory and the cache mechanism working
for constant memory. As compared with the variable data in global memory, the fil-
tering kernel accesses 260 and 130 times more shared data and constant data, namely
arrays array and G at line 26 in Fig. 5, respectively.

In contrast, the memory bandwidth is a performance bottleneck in the backprojec-
tion kernel. This kernel has more data access to global memory, which does not have
cache effects. Actually, global memory is used for 40% of total amount. Thus, the
backprojection kernel has lower effective bandwidth than the filtering kernel. How-
ever, our backprojection kernel achieves almost the same bandwidth as bandwidthTest,
which is a benchmark program distributed with the nVIDIA sample code [13]. In ad-
dition, the backprojection kernel achieves relatively higher floating point performance
because it exploits the texture unit for linear interpolation. The effective performance
reaches 183.8 GFLOPS including 149.1 GFLOPS observed at texture units. Exploiting
this hardware is important to offload workloads from SPs.
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Table 4: Backprojection performance on GeForce 8800 GTX with different acceleration techniques. Meth-
ods #1 and #2 are subsets of the proposed method.

Acceleration technique
Method

Naive #1 #2 Proposed
1. Data reuse no yes yes yes
2. Off-chip memory access reduction no no yes yes
3. Loop unrolling no no no yes
Backprojection time (s) 27.1 24.3 5.6 4.2

6.2. Breakdown Analysis

We measure the performance of two subset implementations to clarify the impact of
each acceleration technique in terms of backprojection performance. Table 4 shows the
details of each implementation with the measured time for the Shepp-Logan phantom.
Our acceleration techniques achieve 6.5 times higher backprojection performance than
the naive method in Table 4. This improvement is mainly achieved by off-chip memory
access reduction that reduces backprojection time to 5.6 seconds with a speedup of
4.8. As compared with the naive method, method #2 has 66% less access to off-chip
memory, leading to 44% reduction of device memory access in total.

The loop unrolling technique further reduces the time from 5.6 to 4.2 seconds. As
we mentioned in Section 5.2, this technique intends to hide the memory latency with
computation, so that we investigate the assembly code to explain this reduction. Since
we use J = 2 for the proposed method, we think that memory accesses for j = 0 can
be overlapped with computation for j = 1 (line 31 in Fig. 5). We then find that such
overlapping computation takes approximately 1.3 seconds if it is not overlapped with
memory accesses. This explains why the time is reduced by 1.4 seconds.

We next investigate the performance with different parameters 〈I, J〉. Figure 9
shows the number T of TBs per MP and the speedup S over the method with 〈I, J〉 =
〈1, 1〉. As we mentioned in Section 5.2, increasing I or J requires more registers to
run the kernel. Due to this consumption, T decreases with the increase of I or J . For
example, the proposed method uses 30 registers per thread when 〈I, J〉 = 〈2, 3〉. In
our kernel, a TB consists of 256 threads, so that it requires 7680 registers per TB while
8192 registers are available for an MP in a GeForce 8800 GTX card. Thus, we have
T = 1 for 〈I, J〉 = 〈2, 3〉.

An interesting behavior in Fig. 9 is that we observe S > 4 if and only if T = 1. This
behavior is not consistent with the highly-threaded GPU architecture, which is designed
to concurrently run multiple TBs on every MP in order to hide the memory latency.
One possible reason for this is that the cache mechanism might be not optimized well
to deal with such concurrent TBs. For example, the cache data could be cleaned every
time when activating the background TB, because each TB takes the responsibility for
different volume region. Actually, there is no cache mechanism for global memory,
which is designed to hide the memory latency by switching the current TB to another
TB when an MP has to wait for data fetch. Thus, this behavior might explain why
global memory does not have a cache mechanism.

The impact of increasing I can be seen at 〈I, J〉 = 〈2, 1〉. As compared with any
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Figure 9: Relationship between the number of thread blocks per multiprocessor and the relative backprojec-
tion performance with different parameters 〈I, J〉. (a) Results on GeForce 8800 GTX and (b) those on Tesla
C870. The texture bandwidth is maximized if a single thread block is assigned to every multiprocessor.

condition with I = 1, this condition has 50% less data access to global memory, so
that we achieve S = 1.93. However, we cannot see this reduction effect when I > 2.
In these cases, the data amount does not dominate the performance due to the cache
mechanism. Actually, the speedup S sharply increases at 〈I, J〉 = 〈2, 2〉 though the
kernel fetches the same data amount as when 〈I, J〉 = 〈2, 1〉.

Finally, the performance at 〈I, J〉 = 〈2, 2〉 is almost the same as that presented in
[3]. Therefore, we think that reducing the number of registers is not always a good
optimization strategy for memory-intensive applications that use textures for hardware
interpolation. Instead, it is important to allow every TB to use a dedicated cache with
achieving a higher locality of data access. That is, using more registers will lead to
higher performance in texture-based methods. Thus, our texture-based method takes
exactly the opposite strategy from the previous method [3], which we mentioned in
Section 2.
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Table 5: Breakdown of execution time on dual Tesla C870 cards. Since high-resolution data requires more
space than the memory capacity, it requires projection readback after the backprojection stage.

Low-resolution data High-resolution data

Breakdown
(N = U = V = 512) (N = U = V = 1024)

Single Projection Voxel Single Projection Voxel
GPU parallelism parallelism GPU parallelism parallelism

Initialization 0.11 0.14 0.12 0.71 0.75 0.43
Projection download 0.14 0.07 0.14 6.67 4.10 4.15
Filtering 0.80 0.40 0.80 3.28 1.64 3.28
Backprojection 4.20 2.09 2.10 31.69 15.76 15.84
Projection readback — — — 0.89 0.56 1.29
Volume readback 0.37 0.67 0.34 2.42 3.29 2.48
Post-processing — 0.34 0.00 — 2.09 0.00
Total 5.62 3.71 3.50 45.66 28.19 27.47

6.3. Performance on Multi-GPU Environment

Table 5 shows the execution time of the single-GPU implementation, the projection
parallelism scheme, and the voxel parallelism scheme on the dual Tesla C870 config-
uration. We use two datasets to understand the scalability of parallelization schemes:
low-resolution data and high-resolution data. The high-resolution data requires at least
4GB of video memory to store the entire volume. To deal with such a large-scale
dataset, the projection parallelism scheme divides the volume into P portions and then
processes each subvolume in a serial manner. We use P = 8 for this experiment.
In contrast, this volume division is naturally implemented by the voxel parallelism
scheme. We also perform data reuse at the filtering stage in both schemes. That is,
the filtered projections are computed only for the first subvolume and are temporally
pushed to main memory after backprojection. However, they are loaded again to skip
the filtering stage for the remaining P − 1 subvolumes.

By comparing performance results between low-resolution data and high-resolution
data in Table 5, we find that the analytical model in Section 5.3 successfully charac-
terizes the complexity of filtering and backprojection stages. For example, both par-
allelization schemes reduce the backprojection time of the single-GPU configuration
approximately into a half. Since we use two Tesla cards (C = 2), this behavior is
clearly represented by the model in Table 5.

Table 5 also shows a trade-off relationship between the download time and the
readback time for low-resolution data. That is, the projection parallelism scheme re-
duces the download time while the voxel parallelism scheme reduces the readback
time. However, this relationship is not observed when processing large-scale data. For
example, both schemes take approximately 4.1 seconds to download high-resolution
projections. This similar behavior can be explained as follows. Since the projection
parallelism scheme iterates the download stage P times, it requires O(PKUV ) time
to download projections (see also Table 5). In contrast, the voxel parallelism scheme
iterates the download stage P/C times, so that requires the same O(PKUV ) time. In
other words, the projection parallelism scheme loses its advantage when dealing with
such a large-scale data.

According to the extended model mentioned above, the high-resolution data re-
quires at least 32 times more data downloads than the low-resolution data. Thus, the
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download/readback time reveals as a performance bottleneck of high-resolution recon-
struction. For example, the voxel parallelism scheme spends 29% of the entire time
for data transfer between main memory and video memory. Since such data transfer is
currently processed in a serial manner, it takes at least 7.9 seconds to reconstruct high-
resolution data though we minimize the filtering and backprojection time using more
graphics cards. Thus, as Amdahl’s law [33] points out, we think that a parallel data
transfer mechanism is essential to increase the overall performance with the number C
of graphics cards.

Finally, the projection parallelism scheme effectively sends the high-resolution vol-
ume to main memory. This is due to the increased data size, because the effective
bandwidth generally increases with the data amount. In fact, the effective bandwidth
between main memory and video memory increases from 1.3 GB/s to 1.6 GB/s in this
case.

7. Conclusion

We have presented a fast method for CB reconstruction on CUDA-enabled GPUs.
The proposed method is based on the FDK algorithm accelerated using three tech-
niques: off-chip memory access reduction; loop unrolling; and multithreading. We
have described how these techniques can be incorporated into CUDA code.

The experimental results show that the proposed method takes 5.6 seconds to re-
construct a 5123-voxel volume from 360 5122-pixel projections. This execution time
is at least 41% faster than previous methods, allowing us to obtain the entire volume
immediately after a scan rotation of the flat panel detector. We also find that the fil-
tering and backprojection performances are limited by the instruction issue rate and
the memory bandwidth, respectively. With respect to acceleration techniques, off-chip
memory access reduction is essential to run the GPU as an accelerator for the CPU. We
also demonstrate out-of-core reconstruction for large-scale datasets, up to 10243-voxel
volume.

Future work includes the support of streaming mechanism [13]. Such a mechanism
is useful to overlap kernel execution with data transfer between main memory and
video memory.
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