August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Parallel Processing Letters
© World Scientific Publishing Company

HARNESSING THE POWER OF IDLE GPUS FOR
ACCELERATION OF BIOLOGICAL SEQUENCE ALIGNMENT*

FUMIHIKO INO, YUKI KOTANI{ YUMA MUNEKAWA and KENICHI HAGIHARA

Graduate School of Information Science and Technology, Osaka University
1-5 Yamada-oka, Suita, 565-0871 Osaka, Japan

Received July 31, 2009
Revised August 24, 2009
Communicated by Guest Editors

ABSTRACT

This paper presents a parallel system capable of accelerating biological sequence align-
ment on the graphics processing unit (GPU) grid. The GPU grid in this paper is a
desktop grid system that utilizes idle GPUs and CPUs in the office and home. Our
parallel implementation employs a master-worker paradigm to accelerate an OpenGL-
based algorithm that runs on a single GPU. We integrate this implementation into a
screensaver-based grid system that detects idle resources on which the alignment code
can run. We also show some experimental results comparing our implementation with
three different implementations running on a single GPU, a single CPU, or multiple
CPUs. As a result, we find that a single non-dedicated GPU can provide us almost the
same throughput as two dedicated CPUs in our laboratory environment, where GPU-
equipped machines are ordinarily used to develop GPU applications. In a dedicated
environment, the GPU-accelerated code achieves five times higher throughput than the
CPU-based code. Furthermore, a linear speedup of 30.7X is observed on a 32-node cluster
of dedicated GPUs. We also implement a compute unified device architecture (CUDA)
based algorithm to demonstrate further acceleration.

Keywords: GPGPU, grid computing, sequence alignment, OpenGL, CUDA.

1. Introduction

With the increasing demand for producing realistic scenes in graphics applications,
the graphics processing unit (GPU) is evolving as an accelerator for compute- and
memory-intensive applications [1-3]. Although this chip is originally designed for
special purposes, it now has a flexible graphics pipeline capable of executing sci-
entific programs written in shading languages, such as C for graphics (Cg) [4] and
OpenGL shading language (GLSL) [5].

*This work was partly supported by JSPS Grant-in-Aid for Scientific Research (A)(20240002),
Young Researchers (B)(19700061), and the Global COE Program “in silico medicine” at Osaka
University.

fCurrently with Central Japan Railway Company.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

2 Parallel Processing Letters

In addition to this graphics-oriented programmability, there are some non-
graphics programming environments, such as compute unified device architecture
(CUDA) [6], close-to-metal (CTM) [7], and OpenCL [8]. These environments reveal
the GPU as pure data-parallel hardware that does not require computer graphics
knowledge to write GPU programs. As compared with CPU-based implementations,
CUDA-based implementations achieve higher performance for highly-threaded ap-
plications, typically with 10X-100X speedups depending on problem characteristics:
available parallelism, data access pattern, and data size, for example.

Thus, the GPU is emerging as an attractive high-performance computing (HPC)
platform for solving compute- and memory-intensive problems in various scientific
fields. However, this chip is also useful for high-throughput computing (HTC) plat-
forms, such as grid systems. That is, GPUs can be regarded as powerful resources in
grid environments, where resources are shared among multiple organizations to con-
struct a virtual supercomputer. We think that there is still huge computing power
left in ordinary circumstances, because the GPU is mostly used for computer-aided
design (CAD) systems in the company and for entertainment in the home. We also
believe that the parallelism inherent in the display device will further increase in
the future, leading to the advance in parallel architecture. Therefore, it is important
for desktop grid systems [9] to support such commodity parallel hardware.

There are some grid projects that exploit the GPU for acceleration of scientific
applications. To the best of our knowledge, the Folding@home project [10] achieves
the highest performance of approximately 5 PFLOPS (July 2009) using 25,000
GPUs that typically run on dedicated systems 24 hours a day [10]. According to
their statistics, this performance is equivalent to 85,000 Cell Broadband Engines
(CBEs) or 5,200,000 CPUs. The main goal of their project is to understand the
process of protein folding. A similar project [11] is running in the field of molecular
dynamics. Though these systems demonstrate successful acceleration in dedicated
environments, it is still not clear how much performance we could gain from non-
dedicated GPUs, which are used for daily work in the office and laboratory. This
motivates us to develop a grid system [12] that focuses on non-dedicated resources
as well as dedicated resources.

In this paper, we demonstrate how well the GPU can accelerate HTC appli-
cations in non-dedicated grid environments. To achieve this, we extend our pre-
vious work [12] by integrating a bioinformatics application into our grid system:
sequence alignment [13] for biological database. Our parallel implementation is an
extension of Liu’s GLSL-based algorithm [14] that accelerates the Smith-Waterman
alignment [13] on a single GPU. The parallel implementation is capable of scan-
ning biological database in a non-dedicated, distributed environment. Since the
GPU grid is an instance of a distributed heterogeneous system, we parallelize
the Smith-Waterman alignment using a master-worker paradigm, namely a well-
known paradigm running successfully on existing grid systems. We also implement
a CUDA-based algorithm [15] and integrate it into the system to demonstrate fur-
ther acceleration.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 3

The paper is structured as follows. Section 2 presents related work. Section
3 summarizes the OpenGL-based Smith-Waterman alignment on the single GPU,
which is the basis of our parallel implementation. Section 4 describes our implemen-
tation with an overview of the grid system. Section 5 shows experimental results
obtained using non-dedicated resources and dedicated resources. Section 6 presents
discussion on some technical issues left in the system. Finally, Section 7 concludes
the paper with future directions.

2. Related Work

The Folding@home project [10] develops several implementations to accelerate pro-
tein folding simulations on CPUs, CBEs, and nVIDIA/ATI GPUs. They employ a
screensaver-based approach to detect idle resources, allowing us to perform large-
scale volunteer computing based on a master-worker paradigm. In their system, grid
applications suspend if resource owners (donators) execute their local application
that requests exclusive DirectX mode [10]. A similar approach is employed in our
system [12], but the main difference is that our system monitors the video mem-
ory consumption to detect idle GPUs. This prevents resource owners from being
interfered with by grid applications even though local applications are not imple-
mented with the exclusive mode. Thus, the problem of resource conflicts between
resource owners and grid users should be addressed to share GPUs in non-dedicated
environments.

Yamagiwa and Sousa [16] propose the Caravela system, which allows us to
perform stream computing in a distributed environment. Their system employs
a master-worker paradigm to efficiently stream data through a distributed, paral-
lel pipeline. Similar to the Folding@home system, the Caravela system probably
assumes dedicated environments.

To the best of our knowledge, Fan et al. [17] firstly demonstrates the impact of
using multiple GPUs for acceleration of non-graphics applications. They construct a
32-node cluster of GPUs in order to accelerate a flow simulation based on the Lattice
Boltzmann model. A 4.6X speedup is achieved by adding an nVIDIA GeForce 6800
Ultra card to each node of the cluster.

Strengert et al. [18] propose a programming framework for running non-graphics
applications on multi-GPU environments. Their framework extends the CUDA spec-
ification [6] to make CUDA-like programs run on arbitrary multi-GPU environ-
ments. Using matrix multiplication, they achieve scalable performance on a single
machine with multiple GPUs. Since the extended specification requires distributed
shared memory to run on GPU clusters, it will be a challenging problem to scale
the performance on such multi-node systems.

With respect to the acceleration of sequence alignment, many projects tackle
this problem by using various accelerators, such as the GPU [14,15,19], CBE [20],
and FPGA [21]. FPGA-based solutions currently achieve the highest performance
among these accelerators, but this hardware is not commonly used in our target

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

4 Parallel Processing Letters

environment. As compared with the CBE (Sony PlayStation 3), we think that the
GPU has advantages in the memory capacity, the network connectivity, and the
performance growth rate [2].

There are two methods for implementing the Smith-Waterman alignment on
the GPU. Liu et al. [14] firstly develop a Smith-Waterman implementation using
OpenGL [22] and GLSL [5]. Their implementation runs on a GeForce 7800 GTX
card and achieves 3.5X-10X speedup over SSEARCH [23], namely a heuristic im-
plementation of the Smith-Waterman algorithm running on the CPU. On the other
hand, Manavski et al. [19] propose a CUDA-based solution, which is approximately
6X faster than the OpenGL-based solution. Finally, Munekawa et al. [15] presents
another implementation that achieves further 3X acceleration through the use of
fast but small on-chip shared memory [6].

3. Sequence Alignment on the Single GPU

The alignment of sequence A = ajas...a, to another sequence B = b1bs...b,, is
to convert A to B by insertion or elimination of sequence elements, where n and m
represent the length of A and that of B, respectively. In particular, local alignment is
the process to identify the most similar part in the pair of sequences. The similarity
here is defined according to the alignment cost being associated with the number
of insertions and eliminations.

3.1. Smith- Waterman Algorithm

The Smith-Waterman algorithm [13] is a dynamic programming method that gives
the exact solution to the problem of local alignment. Let H; ; be the highest similar-
ity between aqas . ..a; and b1bs ... b;, namely a part of sequences ending at element
a; and bj;, respectively, where 1 < ¢ <mn and 1 < j < m. The similarity H; ; is then
defined as follows:

Hi,j = max{Hi,17j71 + s(ai, bj), Ei,j7 Fi,jv 0}, (1)

where s(a,b) represents the substitution cost needed for converting element a to
another element b. F; ; and F; ; are given by

Eij=max{H;; 1 —a,E;;1— b}, (2)
Fi,j = maX{Hi,l)j — Oé,FZ‘,Lj — ,6}, (3)

where o and [represent gap penalties for aligning sequence length. The initial
values for H; j, E; ; and F; j are 0 when ¢ < 1 and j < 1. Note that we currently use
a linear gap penalty in our implementation: & = g = 1. Similarly, the substitution
cost is defined as s(a,b) = 2 if a = b. Otherwise, s(a,b) = —1.

Applying Eq. (1) to all locations ¢ and j, we obtain a matrix H that includes
H; ; as a matrix cell. Figure 1 illustrates an example of matrix H computed for two
sequences A and B. After this matrix computation, the most similar part can be
obtained by performing traceback from the cell with the highest score in the matrix.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 5

Subject sequence B

TCTCGAT
00000000 .
ir of the m
¢ G000 0020
8/T|{0 2 1 2 1 11 3
=lclo 1 43 43 2 2 [meaay €T -C
clTlo 2365 43 4 rerac
“lAl0 1 2 55 4 6 5
Clo 0347655

Fig. 1. Smith-Waterman algorithm. This example shows matrix H computed for two sequences:
A = GTCTAC and B = TCTCGAT. The score on the matrix represents the similarity between
subsequences. Traceback from the highest cell (H4,6 = 7, in this case) gives the alignment result:
TCTC and TCTAC.

In practical situations, the Smith-Waterman algorithm is iteratively applied to
all subject sequences in database. That is, alignments are usually done between N
query sequences and M subject sequences in order to find pairs of subsequences
with higher scores: top ten scores for each query, for example. In this situation,
the most pairs can skip the traceback procedure to save the time. Therefore, the
traceback cost is not so high compared with the matrix computation cost [14]. As
Liu et al. did in their implementation, we also decided to implement the traceback
procedure on the CPU. In addition, the parallelism in this procedure is not high
enough to run efficiently on the GPU.

3.2. Single GPU Implementation

Figure 2 illustrates data dependencies in matrix computation. Equations (1)—(3)
indicate that a matrix cell H; ; depends on its left neighbor H; ;_;, upper neighbor
H;_1 ;, and upper left neighbor H;_; j_;. Therefore, there is no dependence between
any cells on the same antidiagonal, allowing us to process such cells in parallel.
However, there are data dependencies between different antidiagonals of the same
matrix. That is, the t-th antidiagonal depends on the (¢ — 1)-th and the (¢ — 2)-th
antidiagonals. Thus, the available parallelism is limited to the diagonal length of
the matrix, which is not sufficient against 2-D matrix data in terms of the efficiency.
To increase the parallelism, Liu et al. exploit both the data parallelism and the
task parallelism. They simultaneously perform multiple alignments between a query
sequence and M subject sequences in database. As shown in Fig. 2, they pack M
matrices into a single 3-D matrix, exploiting the parallelism in the depth direction.
Thus, the packed data allows the GPU to compute M antidiagonals at a time.
This parallelization scheme requires a (max(n,m) 4+ 1) x M texel texture [2] to
store the t-th antidiagonals of M matrices. In the same manner, we can store the
(t — 1)-th and the (¢ — 2)-th antidiagonals into 2-D textures with the same size.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

6 Parallel Processing Letters

m+1

t-2t-1 t

n+1

Fig. 2. Data dependencies in computation of M matrices, where M represents the number of
subject sequences. Matrix cells on the same antidiagonals of M matrices can be computed in
parallel.

Since similarity scores can be computed from the last two antidiagonals, we are
allowed to have only three 2-D textures instead of a 3-D texture by selecting the
appropriate input/output textures with incrementing ¢. Thus, as shown at line 6 in
Fig. 3(a), n+m — 1 iterations of a loop compute the highest score between a query
sequence and M subject sequences. Note that subject sequences must be sorted
by length to maximize the parallelization efficiency. Otherwise, the matrix can be
sparse, resulting in a lower efficiency due to load imbalance.

We have to divide M subject sequences into batches, because there is a limita-
tion on the maximum texture size, which depends on the GPU architecture. Our
implementation currently assumes 4096 x 4096 texels per texture to make it pos-
sible to run the implementation on older GPUs. Thus, the GPU code in Fig. 3(b)
computes matrices for pairs of a query sequence and 4096 subject sequences at a
time. This code is iteratively invoked until reaching at the end of database entry,
as shown at line 2 in Fig. 3(a).

4. Parallel Alignment on the GPU Grid

Figure 4 shows an overview of the GPU grid. The GPU grid has almost the same
structure as existing grid systems, except that it explicitly utilizes GPUs as general-
purpose computational resources. This system has the following three components:
grid resources, a resource management server, and clients. Grid resources are a
number of desktop PCs connected to the Internet. Any desktop PC can be registered
as a grid resource regardless of having the GPU or not. These resources basically
run local applications to serve their owners but they also execute grid applications if
they are in the idle state. The resource management server takes the responsibility
for monitoring registered resources and for selecting the appropriate resources for
job execution. In addition, it accepts grid jobs from grid users. Finally, clients are
frontend machines serving for grid users who submit grid jobs to the management
server. These machines can also be registered as grid resources.

August 23, 2009

13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment

7

Input: a query sequence and M subject sequences in database
Output: highest scores for every column of M matrices

bl

1. Initialize texture Query with the query sequence;
2. while any unread subject sequences exist in the database do
Initialize texture Subject with a batch of subject sequences; /* batch size = 4096 */

Initialize texture T4, T, and T¢;
Bind and attach T4, Ts, and T¢ to color buffers Ci, Ca, and C3, respectively;
fort=1ton+m—1do
Calculate texture coordinates texCoord[4] and vertex coordinates vertex[4];
if (t mod 3 =0) then
Set C7 as output texture and set C2 and C3 as input texture;
else if (t mod 3 = 1) then
Set Cy as output texture and set Cq7 and C3 as input texture;
else
Set C3 as output texture and set C; and Cq as input texture;
end if;
Set Query and Subject as input texture;
DrawQuad(texCoord, vertez, t); /* Kernel computation on the GPU */
end for;
Read back alignment scores to the main memory;
Release the bindings of textures and buffers;

20. end while;

(a)

1. float4 Linear_Alignment(float2 texCoord: TEXCOORDO,

uniform samplerRECT in_Matrix1: TEXUNITO,
uniform samplerRECT in_Matrix2: TEXUNIT1,
uniform samplerRECT in_Query: TEXUNIT?2,
uniform samplerRECT in_Subject: TEXUNIT3,
uniform float loopCounter):COLOR

float a = texRECT (in_Query, float2(texCoord.y, 0.0f)).r;

float b = texRECT (in_Subject, float2(loopCounter—texCoord.y, texCoord.x)).r;
float left = texRECT (in-Matrix1, texCoord).r — 1.0f;

float up = texRECT (in-Matrix1, texCoord + float2(0.0f, —1.0f)).r — 1.0f;

float upleft = texRECT (in-Matrix2, texCoord + float2(0.0f, —1.0f)).r;

upleft = (a == b) ? upleft + 2.0f : upleft — 1.0f;

float score = max(max(max(0.0f, up), left), upleft);

float highestScore = max(score, texRECT (in_Matrix1, texCoord).a);

return float4(score, 0.0f, 0.0f, highestScore);

Fig. 3.

(b)

Pseudocode of matrix computation on the single GPU. (a) The CPU code iteratively
invokes the GPU code to scan M subject sequences for a query sequence. (b) The GPU code is
applied to every texel of the output texture at line 16 in the CPU code.

4.1. Resource Monitoring and Selection

A screensaver-based system [12] runs on every registered resource to detect the idle
state. We currently use 5 minutes as the waiting time for activating the screensaver,
but this time can be changed by resource owners. After the screensaver activation,

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

8 Parallel Processing Letters

Job submission Tasks Local application

Y A Y

f~O i '

F O~ K :
| /l AN ’

Job results Task results

Idle resources Busy resources
and
task request
Clients Resource Grid resources
(grid users) management server (resource owners)

Fig. 4. Overview of the GPU grid.

the system checks the video memory usage and the CPU usage to confirm both the
GPU and CPU are actually in the idle state. This information is available from the
graphics driver and operating system (OS), so that the perturbation of resource
monitoring is minimized in our system.

Idle resources are then selected for job execution, according to a Condor-like
matchmaking framework [24]. The reason why we select resources is that the GPU is
evolving with increasing heterogeneity of hardware and software. Actually, there are
vendor specific extensions in the OpenGL library, and moreover, CUDA applications
do not run on ATI cards nor even on nVIDIA cards of pre G80 architectures. To
deal with this problem, we need a selection mechanism that allows grid users to
specify the resources they want to use.

Similar to Condor’s framework, a resource specification mechanism is provided
on the basis of a formal language that supports various operators, such as arithmetic,
boolean, and logical operators. For example, grid users must prepare a text file that
describes their requirements in expressions like “vram>=512," “gpu==GeForce
7800 GTX,GeForce 8300 GTX,” and “readback>=1000,” in order to select resources
that provide a readback rate of at least 1000 MB/s and have a GeForce 7800,/8800
GTX card with at least 512 MB of video memory. The performance value here is
measured by benchmark programs [25] at screensaver installation. To assist grid
users in their resource specification, the system provides them resource statistics
including histograms of registered resources.

4.2. Master- Worker Scheme

Figure 5 shows the processing flow of our parallel alignment. We parallelize the
GPU implementation using a master-worker paradigm. Given a grid job consisting
of N query sequences and M subject sequences, we decompose this job into N tasks,
each corresponding to a single query sequence. Since there is no data dependence
between tasks, each task is then independently assigned to an idle resource after
matchmaking. Therefore, a grid resource is responsible for scanning M subject
sequences for a query. Thus, this application can be regarded as a parameter-sweep

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 9

| Receive grid jobs with requirements

Request a task to server after

| <77 screensaver-based idle detection

| Select idle resources by matchmaking

Send the initial task and data to resources Lo “|

Receive a task with data |
1. A query sequence and subject sequences 1

2. Execution files and run-time libraries | Sequence alignment on the GPU |
| |
T
1 Send task results with
| Receive task results |4— -

| Select idle resources by matchmaking |

the next request

Send the next task to resources koo .
- Receive the next task
1. Another query sequence l l
v
Resource management server Grid resources #1, #2, ... #P

Fig. 5. Parallel alignment on the GPU grid. Our parallel implementation is based on a master-
worker paradigm that decomposes a grid job into N tasks, where N represents the number of
query sequences composing the job. Executable files, run-time libraries, and subject sequences are
sent only once to each resource. Query sequences must be sent at every job execution.

application, which efficiently runs on existing grid systems.

The server has to send all necessary data to resources that process tasks. Such
data contains executable files, run-time libraries, and query and subject sequences.
However, once a resource receives a task from the server, the most part of data
can be reused for the next task to save the communication time between the server
and resources. Thus, only query sequences must be sent after the initial assignment,
which is smaller than the remaining data by an order of magnitude.

5. Experimental Results

We now show experimental results to evaluate the system with respect to perfor-
mance. In order to simplify the analysis, we first show results on dedicated resources
and then on non-dedicated resources. Dedicated resources here correspond to cluster
environments where there does not occur conflicts between grid users and resource
owners.

Liu’s algorithm is implemented using the C++ language, the OpenGL library
[22], and the Cg toolkit [4]. We use Frame Buffer Object (FBO) [26] to store the
matrix data in the video memory.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

10 Parallel Processing Letters

Table 1. Machine specification. Eight Windows XP machines are interconnected by 100 Mb/s
Ethernet network. Machine #8 is a laptop PC while the remaining machines are desktop PCs.
Machine #6 has a graphics card with dual GPUs. Arithmetic denotes the floating point
performance of fragment processors in the GPU.

Resource CPU Clock RAM GPU VRAM Fill Arithmetic
ID (GHz) (GB) Capacity BW rate (GFLOPS)
(MB) (GB/s) (Gpixel/s)
#1 Pentium 4 3.4 2 8800 GTX 768 86.4 36.8 345.6
#2 Xeon 2.8 4 8800 GTX 768 86.4 36.8 345.6
#3 Pentium 4 2.8 2 8800 GTX 768 86.4 36.8 345.6
#4 Pentium 4 2.8 1 8800 GTX 768 86.4 36.8 345.6
#5 Xeon 3.8 4 8800 GTS 640 64.0 24.0 230.4
#6 Core 2 Duo 24 2 7950 GX2 512x2 38.4x2 12.0x2 64.0x2
#7 Pentium D 3.0 2 7900 GTX 512 51.2 15.6 124.8
#8 Core Duo 2.0 2 7900 GTXx 512 38.4 12.0 96.0

*: This card is GeForce Go 7900 GTX.

5.1. Setup

Alignments are carried out using the SWISS-PROT database [27] of release 51.0,
which contains 241,242 (= M) entries in a file of 118 MB. This database has a
total of 88,541,632 amino acids, so that the average length m per entry is 367. To
maximize the performance, we have sorted subject sequences with respect to the
length in advance. We use 64 (= N) query sequences of length n = 367. Each query
is stored in a file of approximately 512 B.

To understand how well alignments are accelerated on the GPU, we use
SSEARCH [23] as a CPU implementation of the Smith-Waterman algorithm. Note
that there is an SSE-optimized version [28] of SSEARCH, which is approximately
three times faster than the original.

Table 1 summarizes the specification of eight Windows XP machines employed
for experiments. The first five machines #1-#5 have a GPU of G80 architecture
while the remaining machines have a GPU of G70 architecture. The last machine #8
is a laptop machine. All machines are placed in a local area network (LAN) environ-
ment with 100 Mb/s bandwidth. Using these heterogeneous machines, we compare
our implementation with three implementations: multiple CPU, single CPU, and
single GPU versions.

5.2. Ewvaluation on Dedicated Resources

We first measure the execution time on dedicated resources. The execution time here
corresponds to the elapsed time from start to end: from when the server receives a
grid job to when all task results are sent back to the server. Thus, it includes the
time spent for data transfer between the server and resources. The single GPU and
CPU performances are measured on resources #1 and #6, respectively, where we
obtain the fastest result.

Originally, it takes five hours (17,920 seconds) to align sequences on a single
CPU. This execution time is reduced to 11 minutes (673 seconds) using 8 GPUs. On

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 11

100
90 44 ®CPUtime
GPU time

80 1

70

Task execution time (s)

#1 #2 #3 #4 #5 #6 #1 #8
Machine

(a)

Task execution time (s)

#1 #2 #3 #4 #5 #6 #7 #8
Machine

(b)

Fig. 6. Execution time for a task, which performs a single scan of database. (a) Results on the
GPU and (b) those on the CPU. The GPU time and the CPU time correspond to the execution
time of the GPU code and that of the CPU code, respectively.

the other hand, a single GPU version takes approximately an hour (3,392 seconds),
which is close to the time (3,345 seconds) on 8 CPUs. Therefore, a 5X speedup is
achieved using 8 machines regardless of having the GPU or not. We think that this
nonlinear speedup is reasonable due to the heterogeneous machine configuration.

Figure 6 shows the task execution time spent for a single scan of database.
Resource #6 demonstrates the fastest CPU time of 280 seconds in Fig. 6(b) but
GPU-equipped laptop machine #8 completes the same scan within 88 seconds in
Fig. 6(a). We also can see that resources #1-#4 spend only 18 seconds for the
GPU code. Accordingly, 70% of the entire time is spent for other operations on
the CPU, such as texture switching and data initialization. Therefore, it indicates
that the CPU performance can determine the entire performance of OpenGL-based
applications. Thus, the resource management server should gather both CPU and
GPU information to allow users to select the appropriate resources from a pool of
resources.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

12 Parallel Processing Letters

Number of tasks

#1 #2 #3 #4 #5 #6 #7 #8
Machine

Fig. 7. Task distribution statistics.

We also investigate the communication time spent for data transfer between the
server and resources. We find that the communication time ranges from 14.8 to
21.6 seconds at the first task execution, because each resource has to receive 118
MB of subject sequence data. However, this data transfer can be partly omitted
after the initial execution, as we mentioned before. Thus, the communication time
reduces to at most 20 milliseconds, which is much shorter than the task execution
time shown in Fig. 6(a). This reduction is important to develop scalable systems
capable of increasing application throughput with the number of resources.

The effective network bandwidth in this experiment ranges from 45 to 63 Mb/s,
which probably cannot be achieved in wide area network (WAN) environments. For
example, the communication time will increase to at least 5 minutes if the effective
bandwidth reduces to 3 Mb/s. On such slower network, we have to increase the task
granularity, namely the number N of query sequences, to maximize the efficiency.

Figure 7 shows the number of task execution for each resource. Since a job con-
tains 64 query sequences, the perfect load balancing will be achieved if each machine
is responsible for 8 sequences. However, the number ranges from 6 to 11 mainly due
to the heterogeneous architecture. Actually, resources #6—+#8 is approximately 50%
slower than the remaining resources, because they have relatively older GPUs. The
GPU usually doubles the performance at every new architecture. Thus, there is a
significant gap between the performance of the current generation and that of the
next generation. In this sense, the GPU grid must deal with the problem of load
balancing, which is addressed by the master-worker paradigm in our system.

We next analyze the performance of the GPU code. Figure 8 shows the effec-
tive performance in terms of floating point arithmetic and memory bandwidth. The
performance here is computed from the GPU time in Fig. 6(a), which does not
include the CPU time. In Fig. 8, we can see that resources #1-#4 achieve the high-
est performance of 47 GFLOPS. However, this is not close to the theoretical peak
performance of 345.6 GFLOPS. The reason for this is that the Smith-Waterman
alignment is a memory-intensive application, where the memory bandwidth limits

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 13

Effective (CPU) ™ Effective (GPU) ™ Theoretical (GPU) |

90
30 -
70 -
>
& 60
O
= 50 A
5
'E 40 A
=
5 30 4
m
20 1
10 A
0 -
#1 # #3 #4 #5 #6 #7 #8

Machine

(a)

| ®Effective (CPU) ® Effective (GPU) ™ Theoretical (GPU) |

Floating point performance (GFLOPS)

Machine
(b)

Fig. 8. Effective performance of the alignment code in terms of (a) floating point arithmetic
and (b) memory bandwidth. The GPU performance does not take into account the transfer time
between the main memory and video memory. Effective bandwidth slightly exceeds the theoretical
bandwidth due to texture cache.

the entire performance. Actually, the effective bandwidth on these resources reaches
the theoretical bandwidth of 86.4 GB/s. We also find that the effective bandwidth
slightly exceeds the theoretical bandwidth in some cases, showing a better utiliza-
tion of texture cache, which saves the bandwidth between the video memory and
the GPU. A detailed cache analysis can be seen in [29]. For further acceleration, we
have to increase the arithmetic intensity [3] in the GPU code. This can be resolved
by CUDA [6], which exposes on-chip memory to application developers. For exam-
ple, shared memory in CUDA is useful to save the bandwidth of video memory,
which we present later in Section 5.4.

Finally, we measure the performance on a 32-node cluster system. This homo-
geneous cluster has resource #2 as a computing node. As shown in Fig. 9, a linear

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

14 Parallel Processing Letters

250 32

= Execution time / - 028
200 A =& Speedup / L o4
- 20

E
2 -
E 150 5-
E 102
£ 100 1 VRS
=
= -8

50 4

-4
0 T T T - T -_'___. 0
1 2 4 8 16 32
#0of GPUs

Fig. 9. Execution time and speedup of OpenGL-based implementation measured on a 32-node
dedicated cluster.

speedup of 30.7X is observed when using 32 nodes for 256 (= N) query sequences.
Thus, the performance can be scaled if there is enough tasks for resources. It also
indicates that we need more query sequences to scale the system performance with
the number of resources.

5.3. FEwaluation on Non-dedicated Resources

We next analyze the performance on non-dedicated resources. In the following ex-
periments, we use four resources #1, #5, #6, and #7 for five successive days. These
resources are used by graduate students in our laboratory who perform research on
general-purpose computation on the GPU. Each resource is powered on for 8 hours
per day to develop GPU applications. Dedicated situations such as nights and hol-
idays are not included in the following analysis.

Using four GPU-equipped machines, we observe an average of 202 scans per
day (i.e., 8 hours): 62, 30, 71, and 39 scans on resources #1, #5, #6 and #7,
respectively. Thus, by multiplying these results by the execution time in Fig. 6(a),
the cumulative execution time reach 54, 30, 104, and 52 minutes on resources #1,
#5, #6 and #7, respectively. The same total number of scans takes approximately
16 hours on the single CPU of resource #6. Thus, a single non-dedicated GPU can
achieve almost the same throughput as two dedicated CPUs in the present case.

Figures 10 and 11 show idle period statistics observed from four different owners
over two different months. In Fig. 10, 40% of idle periods are less than 5 minutes.
Such short idle periods cannot be detected by our screensaver-based system, because
the system currently requires at least 5 minutes of keyboard /mouse inactivity before
idle detection. Thus, the system detects only 60% of owner inactivity. However, these
detections cover at least 85% of idle time, as shown in the cumulative analysis in
Fig. 11. Tt should be noted here that the ratio of detected time over the entire time
is in the small range of 85% to 88% though we monitor four different owners over

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 15

100 100
90 H “ Aug-06 90 H “ Aug-06
» 80 H ™ Oct-06 » 80 4 ™ Oct-06
o o
£ 70 £ 70
§60 gso
%50 %50
5 40 5 40 -
S S
=] A
E 30 E 30
“ 20 + Z 90 1
[| =)
10 —r 10 1
NILETFE T NIFFEENTFE
TAPTIYYHERQE S TAPYILYLYHERQES
Idle period (m) Idle period (m)
(a) (b)
100 100
90 H “ Aug-06 90 H “ Aug-06 |
» 80 44 ™ Oct-06 » 80 4 ®Oct-06 —
o o
£ 70 2 70 —
§60 - §60 -
S 50 . S 50
=] =]
5 40 . 5 40
=) =]
£ 30 - E 30
“20 1 | Z 50 4
S LK F I TP Py (S| 111 | T
Nl IEFLEFEFI il AN ud i
TART YR QS S TR TN YT RS
Idle period (m) dle period (m)
(c) (d)

Fig. 10. Idle period statistics of two different months. (a)—(d) Breakdown of idle period length
observed from four different owners. Our screensaver-based system detects idle periods of at least
5 minutes.

different periods of time. For example, Fig. 11(b) indicates that an owner shows a
different behavior in each month, but there is no significant difference with respect
to the distribution of idle period length. In this sense, we think that 5 minutes of
waiting time seems a reasonable length for our 1-minute tasks.

The GPU exploitation contributes to minimize the relative overhead of task dis-
tribution in master-worker systems, because it allows us to increase the granularity
of tasks. For example, the CPU-based implementation will cause many tasks that
cannot be completed within a single idle period, because it requires at least 10
minutes of keyboard/mouse inactivity to process a 5-minute task (see Fig. 6(b)).
In this case, we should decompose each task into smaller subtasks to complete each
within a minute. This will decrease the number of suspended tasks but will increase
the interaction between the server and resources. Since the server performance usu-
ally determines the scalability of master-worker systems, the GPU-accelerated code

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

16 Parallel Processing Letters

30 30
Aug-06 Aug-06
25 _ 25 H
@ =4=0ct-06 =) =9=0ct-06 T
o Q
£ 20 £
o o
s I =
e
< o =
E} =
: :
&) O
5 - - |
0 —
TIPYTRYERQE S
S —~ N N < v O~ © OI\ —
Idle period (m)
(a)
30 30
Aug-06 Aug-06
25 1 25 1
g ==0ct-06 g =9=0ct-06
o
£ 20 g 20 -
° °
= s , 2 s
= = 0
210 — ER!
£ E
O O
5 - — 5
0 L B e — 0 -
TN RYTRXQES
S —~ &N en < v O~ 0 OI\ —
Idle period (m)
(c)

Fig. 11. Breakdown of idle period statistics. (a)—(d) Cumulative idle time for each owner.

contributes to improve not only the performance but also the scalability of grid
systems.

With respect to energy consumption, we find that the alignment code consumes
additional power of around 150W when running on a GeForce 8800 GTX card.
From the owner’s point of view, this increases the energy consumption of resource
#2 by 75%. From the user’s point of view, on the other hand, the energy efficiency
computed from the additional part reaches 313 MFLOPS/W, which is close to 371
MFLOPS/W achieved by Blue Gene/P [30]. Though this is not a fair comparison,
we feel that the GPU grid might become an attractive solution to save the energy
for parameter-sweep applications.

5.4. FEvaluation Using CUDA-based Implementation

We finally show how the performance can be increased using a CUDA-based imple-
mentation [15]. For the results in this section, we use a desktop PC based on a Core

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 17

20 32
= Execution time - 028
_ == Speedup 24
g
s S
'g 16 gg.
z 12
L
»
A -8
-4
-0

#0of GPUs

Fig. 12. Execution time and speedup of CUDA-based implementation measured on a 32-node
dedicated cluster.

2 Duo 3-GHz CPU equipped with a GeForce 8800 GTX card. As we mentioned
in Section 5.2, CUDA allows us to use on-chip memory to save the bandwidth of
off-chip memory. This optimization is useful to increase the performance of memory-
intensive applications, such as the Smith-Waterman alignment.

Our CUDA-based implementation completes an alignment task within 4.3 sec-
onds, which is approximately 12 times faster than the OpenGL-based implemen-
tation. This performance improvement is mainly achieved by a data reuse tech-
nique [15] that significantly reduces the amount of data being fetched from off-chip
video memory.

Similar to the OpenGL-based implementation, we measure the performance on
non-dedicated resources. A graduate student operates the machine for 8 hours to
create presentation slides. We find that the total idle time reaches approximately
1.5 hours. During this idle time, the system completes 597 scans in total. Since a
single scan takes 4.3 seconds, the cumulative execution time reaches 42 minutes.
Note here that the gap between 1.5 hours and 42 minutes is due to the 5 minutes of
the waiting time needed before screensaver activation. That is, given an idle period
of T minutes, only 7' — 5 minutes can be used for task execution. For example, 50%
of idle time will be wasted if T' = 10.

Fig. 12 shows the performance on the 32-node cluster system mentioned in Sec-
tion 5.2. As compared with OpenGL results in Fig. 9, the CUDA-based implementa-
tion significantly reduces the execution time with a 12X acceleration. However, the
speedup in Fig. 12 is lower than that in Fig. 9, because CUDA-based tasks can be
processed in a relatively shorter time. In other words, we have to increase the gran-
ularity of tasks (or jobs) to obtain the same speedup as that observed from OpenGL
results. In summary, we think that CUDA-based implementations are essential to
maximize the performance of grid systems.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

18 Parallel Processing Letters

6. Discussion

We have presented the effective performance of idle GPUs in non-dedicated environ-
ments. However, there is still some technical issues left in the system. For example,
load balancing will be a critical problem in the GPU grid, because the GPU doubles
the performance at every release as shown in Table 1. Actually, the best GPU time
in Fig. 6(a) is at least 3.4 times shorter than others. With respect to the CPU, this
ratio is reduced to a factor of 1.7. Furthermore, there is a significant performance
gap between CUDA-compatible GPUs and others, as we presented in Section 5.4.
Therefore, older GPUs possibly limit the entire performance of the grid system if
the last task of a job is assigned to one of them. Thus, the GPU grid should be
flexible enough to deal with such higher heterogeneity. Though our system solves
this problem by the master-worker paradigm, it might be needed to screen out slow
GPUs in the future. In particular, a task duplication mechanism [31] will be use-
ful to minimize the turnaround time of jobs because the last task can be rapidly
completed by duplication.

Another remaining issue is the reliability problem. Most graphics cards currently
do not have error correction code (ECC) memory, because this capability is not es-
sential to run graphics applications. In this situation, errors typically appear as
wrong pixels on a screen. Such errors are not critical because it is hard for us to
recognize errors hidden on the screen. However, this does not apply to scientific ap-
plications, which require correct results. For example, Maruyama et al. [32] find that
8 out of 60 GPUs cause approximately 10 bit-flips during 3-day run of a memory test
program. Although the recent memory device such as GDDR5 partly supports ECC
function [32], we think that the reliability can be realized by performing redundant
computation on a large number of GPUs in the office and home.

Finally, it is important to identify the killer application of the GPU grid. Sim-
ilar to existing grid systems, we think that parameter-sweep applications will be
the killer application, because the GPU grid is an instance of grid systems. For
example, the entire performance of grid systems is usually determined by the net-
work bandwidth at the server, regardless of GPU acceleration. On the other hand,
GPU acceleration is useful to increase the granularity of tasks in the master-worker
system. In particular, the CUDA-compatible GPU helps us to maximize the system
performance with relatively coarse-grained tasks, as we presented in Section 5.4.

We also think that parameter-sweep applications can be accelerated well in a
single GPU environment. Such applications usually consist of a large number of
independent tasks, making it easier to optimize the code to the CUDA-compatible
GPU. For example, this type of applications have many parameters to be swept with
the same code. Therefore, if there is common data accessed for different parameters,
such data can be stored in on-chip shared memory to save the bandwidth of off-chip
video memory [15,34]. A memory coalescing technique [6] can be further exploited
to maximize the effective memory bandwidth. Thus, using GPUs in grid systems
will further accelerate parameter-sweep applications.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

Acceleration of Biological Sequence Alignment 19

7. Conclusion

We have presented a parallel and distributed implementation of biological sequence
alignment, aiming at demonstrating the effectiveness of utilizing idle GPUs in the
office and home. Our implementation extends Liu’s algorithm [14] to further accel-
erate database scanning in a non-dedicated, distributed environment.

Experimental results show that a single non-dedicated GPU can provide us
almost the same throughput as two dedicated CPUs in our laboratory environment.
Similar to this non-dedicated environment, the GPU-accelerated code also provides
us higher alignment throughput in a dedicated environment, allowing us to use
a task with five times more computation than the CPU-based code. The CUDA-
based implementation demonstrates further acceleration over the OpenGL-based
implementation. Thus, it contributes to increase application throughput using a
less number of grid resources. We think that the GPU grid is useful to collect
powerful resources hidden in current grid systems, leading to further acceleration
of parameter-sweep applications in non-dedicated environments.

Future work includes the evaluation of the system in WAN environments. A hier-
archal framework should be integrated into the system in order to manage thousands
of resources.

Acknowledgment

We would like to thank the anonymous reviewers for their valuable comments.

References

[1] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU
computing,” Proceedings of the IEFEE, vol. 96, no. 5, pp. 879-899, May 2008.

[2] J.D.Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn, and T. J.
Purcell, “A survey of general-purpose computation on graphics hardware,” Computer
Graphics Forum, vol. 26, no. 1, pp. 80-113, Mar. 2007.

[3] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens, “Efficient com-
putation of sum-products on GPUs through software-managed cache,” in Proc. 22nd
ACM Int’l Conf. Supercomputing (ICS’08), Jun. 2008, pp. 309-318.

[4] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A system for pro-
gramming graphics hardware in a C-like language,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 896-897, Jul. 2003.

[5] R.J.Rost, OpenGL Shading Language, 2nd ed. Reading, MA: Addison-Wesley, Jan.
2006.

[6] nVIDIA Corporation, “CUDA Programming Guide Version 1.1,” Nov. 2007, http:
//developer.nvidia.com/cuda/.

[7] AMD, “ATI CTM Guide,” 2006, http://ati.amd.com/companyinfo/researcher/
documents/ATI_CTM_Guide.pdf.

[8] Khronos OpenCL Working Group, “The OpenCL specification,” 2009, http://www.
khronos.org/registry/cl/.

[9] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: architecture and perfor-
mance of an enterprise desktop grid system,” J. Parallel and Distributed Computing,
vol. 63, no. 5, pp. 597-610, May 2003.

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

20 Parallel Processing Letters

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

24]

(25]

(26]
(27]

28]

29]

The Folding@Home Project, “Folding@home distributed computing,” 2008, http://
folding.stanford.edu/.

GPUGRID.net, 2008, http://www.gpugrid.net/.

Y. Kotani, F. Ino, and K. Hagihara, “A resource selection system for cycle stealing
in GPU grids,” J. Grid Computing, vol. 6, no. 4, pp. 399-416, Oct. 2008.

T. F. Smith and M. S. Waterman, “Identification of common molecular subse-
quences,” J. Molecular Biology, vol. 147, pp. 195-197, 1981.

W. Liu, B. Schmidt, G. Voss, and W. Miiller-Wittig, “Streaming algorithms for bio-
logical sequence alignment on GPUs,” IEEE Trans. Parallel and Distributed Systems,
vol. 18, no. 9, pp. 1270-1281, Sep. 2007.

Y. Munekawa, F. Ino, and K. Hagihara, “Design and implementation of the Smith-
Waterman algorithm on the CUDA-compatible GPU,” in Proc. 8th IEEE Int’l Conf.
Bioinformatics and Bioengineering (BIBE’08), Oct. 2008, 6 pages (CD-ROM).

S. Yamagiwa and L. Sousa, “Design and implementation of a stream-based distributed
computing platform using graphics processing units,” in Proc. 4th Int’l Conf. Com-
puting Frontiers (CF’07), May 2007, pp. 197-204.

Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for high perfor-
mance computing,” in Proc. Int’l Conf. High Performance Computing, Networking
and Storage (SC’04), Nov. 2004, 12 pages (CD-ROM).

M. Strengert, C. Miiller, C. Dachsbacher, and T. Ertl, “CUDASA: Compute unified
device and systems architecture,” in Proc. 7th Eurographics Symp. Parallel Graphics
and Visualization (EGPGV’08), Apr. 2008, pp. 49-56.

S. A. Manavski and G. Valle, “CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment,” BMC' Bioinformatics, vol. 9,
no. S10, Mar. 2008, 9 pages.

M. Farrar, “Optimizing Smith-Waterman for the cell broadband engine,” 2008, http:
//farrar.michael.googlepages.com/.

P. Zhang, G. Tan, and G. R. Gao, “Implementation of the Smith-Waterman algo-
rithm on a reconfigurable supercomputing platform,” in Proc. 1st Workshop High-
performance reconfigurable computing technology and applications (HPRCTA’06),
Nov. 2007, pp. 39-48.

D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide, 5th ed.
Reading, MA: Addison-Wesley, Aug. 2005.

W. R. Pearson, “Searching protein sequence libraries: Comparison of the sensitivity
and selectivity of the Smith-Waterman and FASTA algorithms,” Genomics, vol. 11,
no. 3, pp. 635-650, Nov. 1991.

R. Raman, M. Livny, and M. Solomon, “Resource management through multilateral
matchmaking,” in Proc. 9th IEEE Int’l Symp. High Performance Distributed Com-
puting (HPDC’00), Aug. 2000, pp. 290-291.

I. Buck, K. Fatahalian, and P. Hanrahan, “GPUBench: Evaluating GPU performance
for numerical and scientific applications,” in Proc. 1st ACM Workshop General-
Purpose Computing on Graphics Processors (G’P2 ’04), Aug. 2004, p. C-20.

OpenGL Extension Registry, “Gl_ext_framebuffer_object,” 2006, http://oss.sgi.com/
projects/ogl-sample/registry /EXT/framebuffer_object.txt.

A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence data bank and its
supplement TrEMBL,” Nucleic Acids Research, vol. 25, no. 1, pp. 31-36, Jan. 1997.
X. Meng and V. Chaudhary, “Exploiting multi-level parallelism for homology search
using general purpose processors,” in Proc. 11th Int’l Conf. Parallel and Distributed
Systems (ICPADS’05), Volume II Workshops, Jul. 2005, pp. 331-335.

V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear algebra,”

August 23,2009 13:31 WSPC/INSTRUCTION FILE main

(30]

(31]

32]

(33]

34]

Acceleration of Biological Sequence Alignment 21

in Proc. Int’l Conf. High Performance Computing, Networking and Storage (SC’08),
Nov. 2008, 11 pages (CD-ROM).

W. chun Feng and K. Cameron, “The green500 list: Encouraging sustainable super-
computing,” Computer, vol. 40, no. 12, pp. 50-55, Dec. 2007, http://www.green500.
org/.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
in Proc. 6th Symp. Operating System Design and Implementation (OSDI’04), Dec.
2004, pp. 137-150.

N. Maruyama, A. Nukada, and S. Matsuoka, “Software-based ECC for GPUs,”
in Proc. Symp. Application Accelerators in High Performance Computing
(SAAHPC’09), Jul. 2009, http://saahpc.ncsa.illinois.edu/sessions/day2/session2/
Maruyama._presentation.pdf.

M. Strengert, M. Magallén, D. Weiskopf, S. Guthe, and T. Ertl, “Large volume visual-
ization of compressed time-dependent datasets on GPU clusters,” Parallel Computing,
vol. 31, no. 2, pp. 205219, Feb. 2005.

T. Okuyama, F. Ino, and K. Hagihara, “A task parallel algorithm for computing the
costs of all-pairs shortest paths on the CUDA-compatible GPU,” in Proc. 6th Int’l
Symp. Parallel and Distributed Processing and Applications (ISPA’08), Dec. 2008,
pp. 284-291.

