
A Task Parallel Algorithm for Computing the Costs of
All-Pairs Shortest Paths on the CUDA-compatible GPU

Tomohiro Okuyama Fumihiko Ino Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Abstract

This paper proposes a fast method for computing the
costs of all-pairs shortest paths (APSPs) on the graph-
ics processing unit (GPU). The proposed method is imple-
mented using compute unified device architecture (CUDA),
which offers us a development environment for performing
general-purpose computation on the GPU. Our method is
based on Harish’s iterative algorithm that computes the
cost of the single-source shortest path (SSSP) for every
source vertex. We present that exploiting task parallelism in
the APSP problem allows us to efficiently use on-chip mem-
ory in the GPU, reducing the amount of data being trans-
ferred from relatively slower off-chip memory. Further-
more, our task parallel scheme is useful to exploit a higher
parallelism, increasing the efficiency with highly threaded
code. As a result, our method is 3.4–15 times faster than
the prior method. Using on-chip memory, our method elim-
inates approximately 20% of data loads from off-chip mem-
ory.

1 Introduction

The all-pairs shortest path (APSP) problem is to find
paths with the minimum costs for all source-destination
pairs in a graph. The cost here is given by the sum of the
weights of edges composing the path. Finding such paths is
one of the basic operations in graph theory. This fundamen-
tal problem plays a key role in many applications in a wide
range of fields, such as geographical information systems,
networking systems, intelligent transportation systems, and
bioinformatics applications. In more detail, there are some
practical applications [6] that require the costs instead of the
paths.

One challenging issue in solving the APSP problem is
that it requires a large amount of computation to find AP-
SPs. For example, the Floyd-Warshall (FW) algorithm
finds APSPs for a weighted, directed graph in O(|V |3)
time, where |V | represents the number of vertices in a

graph. Therefore, many researchers have proposed fast
methods using various accelerators, such as graphics pro-
cessing units (GPUs) [4,5], field-programmable gate arrays
(FPGAs) [2], and clusters [9].

To the best of our knowledge, Harish et al. [4] show
the fastest results by using the GPU [8]. The GPU is off-
the-shelf hardware designed to accelerate graphics tasks,
such as gaming and rendering. In recent years, this hard-
ware rapidly increases the computational performance with
a wide memory bus and hundreds of processing elements,
called stream processors (SPs). In addition, nVIDIA has
released a development framework, called compute uni-
fied device architecture (CUDA) [7], which enhances this
special-purpose hardware by allowing C-like programs to
be executed on the nVIDIA GPU.

Using the CUDA framework, Harish et al. [4] implement
two algorithms for the APSP problem: the FW algorithm
and an iterative algorithm that repeatedly computes single
source shortest paths (SSSPs) with varying the source ver-
tex. They show that the SSSP-based algorithm is approx-
imately six times faster than the FW algorithm. However,
this prior algorithm can be further improved to achieve a
full utilization of memory resources available in the GPU.
For example, only off-chip memory is used because there
is no common data accessed simultaneously from multiple
SPs. Thus, higher speed (but small) on-chip shared memory
can be used to save the bandwidth between off-chip mem-
ory and SPs.

In this paper, we propose a task parallel algorithm ca-
pable of exploiting on-chip memory to accelerate the cost
computation of APSPs in a graph. Our algorithm is based
on Harish’s iterative algorithm [4] but employs a differ-
ent parallelization scheme in order to save the bandwidth
between off-chip memory and SPs. To achieve this, the
proposed scheme exploits task parallelism so that it solves
in parallel multiple SSSP problems with different sources.
This allows SPs to simultaneously access the same data be-
cause each SP takes the responsibility for solving one of
the task-parallel problems. Such common access leads to
an efficient use of on-chip shared memory, which is use-

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.40

284

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.40

284

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.40

284

2008 International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3471-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPA.2008.40

284



ful to reduce data accesses to off-chip memory. Further-
more, the proposed scheme contributes to achieve higher
speedup with more parallel tasks and less synchronization
on the GPU.

The rest of the paper is organized as follows. We begin
in Section 2 by introducing related work. Section 3 shows
a brief overview of CUDA and Section 4 summarizes the
prior SSSP-based method. Section 5 describes our method
and Section 6 shows experimental results. Finally, Section
7 concludes the paper.

2 Related Work

Harish et al. [4] present two APSP algorithms, namely
the FW algorithm and the SSSP-based iterative algorithm,
both implemented using CUDA. They demonstrate that the
SSSP-based implementation takes approximately 10 sec-
onds to obtain the APSP costs for a graph with |V | = 3072
vertices. The speedup over the CPU-based FW implemen-
tation reaches a factor of 17. With respect to memory con-
sumption, their algorithm requires O(|V |) space while the
FW algorithm requires O(|V |2) space. This advantage al-
lows us to deal with larger graphs, up to |V | = 30720 ver-
tices processed within two minutes. However, only off-chip
memory is used because (1) there is no data that can be
shared between SPs and (2) the entire graph data is too large
for 16 KB of on-chip memory.

Micikevicius [5] presents an OpenGL-based method that
implements the FW algorithm on the GPU by mapping
it to the graphics pipeline. The implementation runs on
an nVIDIA GeForce 5900 Ultra, which demonstrates three
times faster results compared with a 2.4 GHz Pentium 4
CPU. It takes approximately 203 seconds to compute AP-
SPs for |V | = 2048.

An FPGA-based method is proposed by Bondhugula et
al. [2]. They implement a tiled version of the FW algorithm
and develop a model to predict the performance for larger
FPGAs. As compared with a CPU-based method running
on 2.2 GHz Opteron, their method reduces execution time
for |V | = 16384 from approximately four hours to 15 min-
utes, achieving a speedup of 15.2X.

An automated tuning approach is proposed by Han et
al. [3] to accelerate the FW algorithm on the CPU. Their
method is optimized by cache blocking and SIMD vector-
ization. Using a 3.6 GHz Pentium 4 CPU, it takes 30 sec-
onds to solve the APSP problem for |V | = 4096.

Finally, Srinivasan et al. [9] show a cluster approach
to parallelize the FW algorithm on a distributed memory
machine. However, their method does not scale well with
the number of computing nodes, because the data size |V |
seems to be small for the deployed cluster. A speedup of
1.2X is observed on a 32-node system when using a graph
with |V | = 4096.

SP

Shared Memory

Graphics Card

Multiprocessor (MP)

Reg
...

Device Memory

MP MP...

Graphics Processing Unit (GPU)

Main Memory

CPU
SP

Reg

SP

Reg

SP

Reg

Figure 1. CUDA hardware model. SP and
reg denote stream processor and register, re-
spectively.

In summary, the SSSP-based algorithm shows the fastest
results while many researchers implement the FW algo-
rithm on various accelerators. With respect to the FW im-
plementation, the timing results mentioned above are equiv-
alent to 9.6, 4.6, and 1.0 GFLOPS (76.8, 36.8, and 8.0 GB/s)
on the FPGA [2], the CPU [3], and the GPU [4], respec-
tively. On the other hand, the GPU employed in [4] provides
a peak performance of 345.6 GFLOPS and a peak band-
width of 86.4 GB/s. Thus, we think that the performance on
the GPU can be further improved though the SSSP-based
algorithm demonstrates the fastest result.

3 Compute Unified Device Architecture

Compute unified device architecture (CUDA) [7] is a
development framework that allows us to write GPU pro-
grams without understanding the graphics pipeline. Using
this framework, we can assume that the GPU is a SIMD ma-
chine that accelerates highly threaded applications by pro-
cessing thousands of threads in parallel. The GPU program
is generally called as kernel, which is launched from the
CPU code to process threads in a SIMD fashion. The same
kernel is executed for every thread but with different thread
IDs to perform SIMD computation.

Figure 1 shows an overview of the GPU architecture.
The GPU employs a hierarchical architecture that consists
of several multiprocessors (MPs), each having stream pro-
cessors (SPs) for processing threads. The important point
here is that SPs within the same MP are allowed to share
on-chip memory called shared memory. This memory hier-
archy is useful to save the memory bandwidth between SPs
and off-chip memory called device memory, because it can
be used as a software cache shared by multiple SPs belong-
ing to the same MP. Accordingly, a hierarchical structure
is incorporated into threads to realize efficient data access.
That is, threads are structured into equal-sized groups, each
called as a thread block, which is independently assigned to
an MP. Therefore, developers have to write their kernel such

285285285285



that there is no data dependence between different thread
blocks. Due to the same reason, the GPU does not have a
mechanism that synchronizes all threads. Such global syn-
chronization involves splitting the kernel into two pieces,
which are then launched sequentially from the CPU.

Each MP processes a thread block in the following way.
Given a block, it splits the block into groups of threads
called warps. The number of threads in a warp, which is de-
fined as 32 threads in current hardware, is called as the warp
size. Each of warps is then processed by the MP in a SIMD
fashion. Therefore, branching threads in the same warp will
divergent the warp. Such divergent warps [7] degrade the
performance because instructions must be serialized due to
different control flows.

While shared memory is almost as fast as registers, de-
vice memory takes 400 to 600 clock cycles to access data.
Therefore, the GPU architecture is designed to hide this
latency with independent computation. This also explains
why thread blocks must be independent. Such independent
blocks are useful to allow MPs to continue computation by
switching the block that has to wait data from device mem-
ory. Therefore, it is better to assign multiple thread blocks
to every MP. However, memory resources such as shared
memory and registers usually limit the number of thread
blocks per MP.

Memory coalescing [7] is also important to achieve a full
utilization of the wide memory bus between device memory
and SPs. Using this technique, the memory accesses issued
from threads in a half-warp can be coalesced into a sin-
gle access if the source/destination address satisfies align-
ment requirements: a thread with ID N within the half-warp
should access address base + N , where base is a multiple
of 16 bytes [7].

4 SSSP-based Iterative Method

The SSSP-based iterative method [4] computes the costs
of APSPs in a directed graph G = (V,E,W ) with positive
weights, where V is a set of vertices, E is a set of edges,
and W is a set of edge weights on the graph G. In the
following, let |V | and |E| be the number of vertices and
that of edges, respectively. Given a graph G, the method
computes an SSSP |V | times with varying the source vertex
s ∈ V . This iteration is sequentially processed by the CPU,
but each SSSP problem is solved in parallel on the GPU.

To solve an SSSP problem, an iterative algorithm [4] is
implemented using CUDA. This algorithm associates every
vertex v ∈ V with cost cv , which represents the cost of the
current shortest path from the source s to the destination v.
The algorithm then minimizes every cost until converging
to the optimal state. This cost minimization is done by pro-
cessing two phases alternatively: the scattering phase and
the checking phase. In the scattering phase, all vertices try

s

v

n0 n1

n2

cn0 = 56

cn2 = 17

cn1 = 

cv = 25

∞

56

17

25
2

108

(a)

s

v

n0 n1

n2

cn0 = 33

cn2 = 17

cn1 = 35 

cv = 25

17

25
2

108

(b)

Figure 2. Cost minimization. (a) For each ver-
tex v in the graph, (b) the costs of its neigh-
bors n0, n1, and n2 are updated in the scatter-
ing phase.

to minimize the costs of their neighbors in parallel. Figure
2 illustrates how this minimization works for a single ver-
tex v. After this, the checking phase confirms whether the
previous scattering phase has changed the costs of vertices.

Figure 3 shows this algorithm. Firstly, the cost of every
vertex v ∈ V except the source s is initialized to infinity,
which means that v is not reachable from s at the initial
state. On the other hand, the cost is set to zero for the source
s. The cost minimization then begins at line 4 for a set M
of vertices, where M is the modification set, which con-
tains vertices whose neighbor(s) have not yet reached to the
optimal state. Given such a vertex v ∈ M , the algorithm
updates the cost cn at line 9, for every neighbor n ∈ V such
that (v, n) ∈ E. The updated cost here is temporally stored
to a variable un in order to check convergence later at line
13. Vertices that have changed their costs are added to set
M for further minimization (line 14). The iteration stops
when M becomes empty.

This algorithm requires synchronization between the
scattering phase and the checking phase (line 12). Other-
wise, some processing elements might overwrite the up-
dated cost uv after uv has been confirmed to be minimal.
It also should be noted that the algorithm requires atomic
instructions to correctly process the scattering phase. Since
multiple processing elements can update the same cost un at
the same time, we have to deal with the consistency of con-
current write access. Atomic instructions solve this issue
but they are supported only on recent GPUs with compute
capability 1.1 and higher [7]. If we lack this capability, the
minimum cost un will be overwritten by a larger cost at line
9, resulting in a wrong result.

We now explain how Harish et al. implement the algo-
rithm on the GPU. As we mentioned earlier, there is no
global synchronization mechanism in CUDA. Therefore,
they develop two kernels, each for the scattering phase and
for the checking phase. In both kernels, a thread is respon-

286286286286



SSSP ALGORITHM(s, V , E, W ) /* s: source vertex */
1: initialize cv := ∞ and uv := ∞ for all v ∈ V /* uv : updated cost of vertex v */
2: cs := 0 /* cv : current cost of vertex v */
3: M := {s}
4: while M is not empty do
5: for each vertex v ∈ V in parallel do
6: if v ∈ M then /* Scattering phase */
7: remove v from M
8: for each neighboring vertex n ∈ V such that (v, n) ∈ E do
9: un := min(cn, cv + wv,n) /* wv,n: weight of edge (v, n) */

10: end for
11: end if
12: synchronization
13: if cv > uv then /* Checking phase */
14: add v to M
15: cv := uv

16: end if
17: end for
18: end while

Figure 3. Algorithm for finding an SSSP from the source vertex s ∈ V .

4

5

10

6

8

9

7 20

5

4

7

6

31 1

3

2
12

15

0 2 3 5 8 10 10 11

1 2 4 4 7 0 6 7 3 6 5 5

9 7 15 1 3 12 4 2 6 8 5 10

0 1 2 3 4 5 6 7

Wa

Ea

Va

Figure 4. Adjacency list representation. Array
V a stores the indices to the head of each ad-
jacency list in Ea. Array Ea and Wa store ad-
jacency lists of every vertex and edge weight,
respectively.

sible for a vertex v ∈ V in the graph. Thus, the cost mini-
mization is parallelized using |V | threads.

Figure 4 illustrates how a graph is represented in their
kernels. They employ an adjacency list representation to
store a graph in device memory. In this representation, each
vertex data has a pointer to its adjacency list of edges. The
adjacency list of vertex v here contains all outgoing edges
n ∈ V such that (v, n) ∈ E. Harish et al. convert these
lists into arrays V a, Ea, and Wa, which store vertex set V ,
edge set E, weight set W , respectively. As shown in Fig. 4,
element V a[v] has an index to array Ea, where the head of
the adjacency list of v exists. Since all adjacency lists are
concatenated into array Ea of size |E|, the adjacency list
of vertex v is stored from element V a[v] to V a[v + 1] −
1 in Ea. Similarly, the weight of edge Ea[i] is stored in
Wa[i], where 0 ≤ i ≤ |E| − 1. In addition to the arrays
mentioned above, they use additional arrays Ma, Ca, and
Ua to store modification set M , current cost cv , and updated
cost uv, respectively. Each of these arrays has |V | elements
and its index v corresponds to vertex v. They store these
three arrays in device memory.

SSSP SCATTERING KERNEL(V a, Ea, Wa, Ma, Ca, Ua)
1: v := threadID
2: if Ma[v] = true then
3: Ma[v] := false
4: for i := V a[v] to V a[v + 1] − 1 do
5: n := Ea[i]
6: Ua[n] := min(Ua[n], Ca[v] + Wa[n])
7: end for
8: end if

Figure 5. Pseudocode of scattering kernel [4].
This kernel is responsible for a single vertex
v and updates the costs of its adjacent ver-
tices.

Figure 5 shows a pseudocode of the scattering kernel,
which implements lines 6–11 in Fig. 3. This kernel is in-
voked for every thread tv , which is responsible for vertex
v ∈ V . After this kernel execution, the CPU launches the
second kernel to process the checking phase. This checking
kernel updates array Ma and also sets a flag to true if any
updated cost is found. The CPU then checks this flag to de-
termine if the iteration should be stopped or not. Thus, the
flag prevents the CPU from scanning the entire array Ma.

5 Proposed Method

We now describe the proposed algorithm for accelerat-
ing the cost computation of APSPs on a directed, positively
weighted graph G. As shown in Fig. 6(b), our algorithm
computes N tasks in parallel, where a task deals with an
SSSP problem. This task parallel scheme allows us to share
graph data between different tasks. Another important ben-
efit is that it allows the kernel to generate more threads
at a launch. This leads to an efficient execution on the

287287287287



Thread

. . .

Vertex

Time

s = v0

s = v1

(a)

. . .Time

S1 = {vN, vN+1, ..., v2N-1}

S0 = {v0, v1, ..., vN-1}

. . .

. . .

Threads that can share data

(b)

Figure 6. Comparison of parallelization scheme between (a) prior method [4] and (b) proposed
method. Our kernel solves N SSSP problems at a time. The graph data is shared between threads
that are responsible for the same vertex but in different SSSP problems.

GPU, which employs a massively multithreaded architec-
ture. Since the algorithm we use for a single SSSP problem
is the same one developed by Harish et al. [4], we explain
here how tasks are grouped to share the graph data.

Let ps denote an SSSP problem with the source vertex
s ∈ V . The APSP problem consists of |V | SSSP prob-
lems p0, p1, . . . , p|V |−1 and there is no data dependence
between them. Therefore, we can pack any N problems
into a group to solve the group in parallel, where 1 ≤
N ≤ |V |. Thus, the k-th group contains N SSSP problems
pkN , pkN+1, . . . , p(k+1)N−1, where 0 ≤ k ≤ �|V |/N�−1.
Let Sk denote the set of source vertices in the k-th group
of N SSSP problems, where 0 ≤ k ≤ �|V |/N� − 1. The
proposed scheme then computes SSSPs from every source
s ∈ Sk on the GPU while it invokes this computation
�|V |/N� times sequentially from the CPU. We assign a ver-
tex to a thread as Harish et al. do in their algorithm. Accord-
ingly, our kernel processes N |V | threads in parallel while
the prior kernel does |V | threads, as shown in Fig. 6.

Similar to Harish’s algorithm, our algorithm consists of
the scattering phase and the checking phase, as shown in
Fig. 7. However, our algorithm differs from the prior algo-
rithm with respect to the use of shared memory in the scat-
tering phase. Let tv,s be the thread, which is responsible for
vertex v ∈ V in problem ps, where s ∈ V . In our algorithm,
thread tv,s tries to update the cost cn,s (variable un,s at line
9 in Fig. 7), which represents the cost of neighboring vertex
n ∈ V in problem ps. The graph data that can be shared

between threads is edge (v, n) at line 8 and weight wv,n at
line 9, because both variables do not depend on the source
vertex s. In order to share such s-independent data between
threads, we structure a thread block such that it includes N
threads tv,kN , tv,kN+1, . . . , tv,(k+1)N−1, which are respon-
sible for the same vertex v but in different problems. Figure
8 shows the data structure more precisely. Note that ev-
ery thread block contains a multiple B of such N threads
to increase the block size for higher performance. Thus,
such threads can save the memory bandwidth if they update
the costs of their neighbors. However, it requires additional
copy operations to duplicate data to shared memory. There-
fore, threads might degrade the performance if such a com-
mon access rarely occurs during execution.

With respect to the graph representation, our kernel uses
a slightly different data structure from the prior kernel. We
use the same arrays V a, Ea, and Wa, but they are partially
shared between threads as mentioned before. The remain-
ing arrays Ca, Ua, and Ma are separately allocated for ev-
ery problem ps, so that these arrays have N |V | elements as
shown in Fig. 8. The reason why we need such larger arrays
is that the GPU does not support dynamic memory alloca-
tion though each SSSP problem can have a different number
of unoptimized vertices at each iteration. Therefore, we use
N times more arrays to provide dedicated arrays to each of
N problems.

This decision might prevent us from using small shared
memory for arrays Ca, Ua, and Ma. However, it is not

288288288288



N SSSPS ALGORITHM(Sk , V , E, W ) /* Sk: set of source vertices */
1: initialize cv,s := ∞ and uv,s := ∞ for all v ∈ V and s ∈ Sk /* uv,s: updated cost of vertex v in problem ps */
2: initialize cs,s := 0 for all s ∈ Sk /* cv,s: current cost of vertex v in problem ps */
3: add pair 〈s, s〉 to set M for all s ∈ Sk

4: while M is not empty do
5: for each vertex v ∈ V and each source s ∈ Sk in parallel do /* Scattering phase */
6: if 〈v, s〉 ∈ M then
7: remove 〈v, s〉 from M
8: for each neighboring vertex n ∈ V such that (v, n) ∈ E do
9: un,s := min(cn,s, cv,s + wv,n)

10: end for
11: end if
12: synchronization
13: if cv,s > uv,s then /* Checking phase */
14: add 〈v, s〉 to M
15: cv,s := uv,s

16: end if
17: end for
18: end while

Figure 7. Algorithm for finding SSSPs from each s of source vertices Sk.

Vertex 0 Vertex 1 Vertex |V|-1

N

Thread

Array

N |V|

. . .

. . .

t0,0 t0,1 t1,0

. . . . . .

t0,N-1

Thread block (BN threads)

. . .

t1,N-1 t|V|-1,0 t|V|-1,N-1

Figure 8. Array interleaving for coalesced
memory accesses. The same vertices but for
different problems are stored in a contiguous
address space. B = 2, in this case.

a critical problem because each element in these arrays is
accessed only by its responsible thread. Instead, as shown
in Fig. 8, it is important to interleave array Ma to allow
threads tv,0, tv,1, . . . , tv,N−1 in the same thread block to
access array elements in a coalesced manner. Similarly, we
arrange arrays Ca and Ua into the same structure to realize
coalesced accesses in the checking kernel. This also con-
tributes to simplify addressing for data accesses. However,
it is not easy to realize coalesced accesses in the scattering
kernel because every thread updates different elements of
Ua.

Figure 9 shows a pseudocode of our scattering kernel.
As we mentioned before, we use shared memory for vertex
set V , edge set E, and weight set W : arrays from, to, es,
and ws at lines 6 and 12. In addition, we also use shared
variable ms to perform reductions of modification set M
at lines 7–10. That is, set M is shared among N threads,
which are responsible for the same vertex v but for different
problems. This means that all of such N threads must be en-
gaged in data duplication if any of them has not yet finished

the minimization. This cooperative strategy is essential to
increase the number of coalesced accesses on the GPU. For
memory-intensive applications, we think that SPs must be
used for parallelization of memory accesses, namely coa-
lesced accesses, rather than that of computation. Note that
this shared space is used only for this purpose, so that we
write the new set M directly to device memory at line 22.

6 Experimental Results

To evaluate the performance of our method, we compare
it with prior methods: Harish’s SSSP-based method [4] run-
ning on the GPU and Dijkstra-based method running on the
CPU. The latter is accelerated using a binary heap and is
known as a fast algorithm for finding an SSSP for sparse
graphs. To the best of our knowledge, there is no efficient
parallelization for Dijkstra’s algorithm. Since the CPU im-
plementation is not multithreaded, it runs on a single core.

We perform all experiments on a PC with an Intel Xeon
5440 2.83 GHz CPU, 12 MB L2 cache, and 8 GB RAM.
The GPU employed for experiments is an nVIDIA GeForce
8800 GTS (G92 architecture) with 512 MB of device mem-
ory and 16 MPs, each having 8 SPs. All implementations
run on Windows XP with CUDA 1.1 and driver version
169.21. Note here that G92 architecture supports atomic
instructions to correctly process the scattering kernel.

We investigate the performance with varying the graph
size in terms of the number |V | of vertices and that |E| of
edges. The graph data we used in this experiment is random
graphs generated by a tool [1]. Using this tool, we generate
graphs such that every weight has an integer value within
the range [1, wmax], where wmax = |V |.

Table 1 shows timing results obtained with varying the
number |V | of vertices. During measurements, the number

289289289289



Table 1. Timing results for random graphs with a different number |V | of vertices. Results are pre-
sented in milliseconds.

Method Platform
|V |: Number of vertices

1K 2K 4K 8K 16K 32K
Harish SSSP-based [4] 934 2,130 5,244 13,046 36,670 106,743
Proposed w/o shared memory GPU 71 212 748 2,764 11,128 44,488
Proposed 62 175 586 2,074 8,257 31,052
Dijkstra SSSP-based CPU 132 590 2,644 11,626 50,478 219,908

N SSSPS SCATTERING KERNEL(V a, Ea, Wa, Ma, Ca, Ua, N )
1: v := threadID div N /* vertex ID */
2: s := threadID mod N /* source (problem) ID */
3: /* vertex ID in arrays V a, Ma and Ca */
4: vg := blockID ∗B + v
5: /* Arrays in shared memory */
6: shared es[B, N ], ws[B, N ], ms[B]
7: ms[v] := false
8: if Ma[vg, s] = true then
9: ms[v] := true

10: end if
11: if ms[v] = true then
12: shared from[N ], to[N ]
13: /* Copy data to shared memory */
14: from[v] := V a[vg]
15: to[v] := V a[vg + 1]
16: neighbors := to[v] − from[v]
17: if s < neighbors then
18: es[v, s] := Ea[from[v] + s]
19: ws[v, s] := Wa[from[v] + s]
20: end if
21: if Ma[vg, s] = true then
22: Ma[vg, s] := false
23: for i := 0 to neighbors − 1 do begin
24: n := es[v, i]
25: Ua[n, s] := min(Ua[n, s], Ca[vg, s] + ws[v, i])
26: end for
27: end if
28: end if

Figure 9. Pseudocode of proposed scattering
kernel. This kernel solves N SSSP problems
in parallel.

|E| of edges is fixed to |E| = 4|V |, meaning that a single
vertex has four outgoing edges in average. In addition to
the three methods mentioned before, we also implement an
unshared version of the proposed method that uses device
memory instead of shared memory.

As compared with the prior SSSP-based method, the
proposed method achieves the best speedup of 15X when
|V | = 1K. In particular, our method runs more efficiently
than the prior method when the graph has fewer vertices.
The reason for this is that our method has many threads that
can be used for hiding the memory latency. For example, it
generates 32K threads for 16 MPs when |V | = 1K, which

is equivalent to 2K threads per MP. In contrast, the prior
method has 64 threads per MP. Thus, more threads belong-
ing to different thread blocks are assigned to every MP in
our method. Such multiple assignments are essential to hide
the latency with other computation, making the GPU-based
methods faster than the CPU-based Dijkstra method, which
is faster than the prior method when |V | ≤ 8K.

Since the proposed method solves N SSSP problems at
a time, the number of kernel launches is reduced to ap-
proximately 1/N as compared with the prior method. This
implies that we can reduce the synchronization overhead
needed at the end of a kernel execution. This reduction ef-
fects are observed clearly when |V | is small, where synchro-
nization cost accounts for a relatively large portion of total
execution time. Thus, less synchronization allows threads
to have shorter waiting time at the kernel completion.

By comparing the proposed two methods, we can see
that the speedup achieved by shared memory ranges from
a factor of 1.1 to that of 1.4. This speedup is achieved by
shared memory, which eliminates approximately 20% of the
data access between SPs and device memory. On the other
hand, the unshared version of the proposed method is at
least 2.4 times faster than the prior method. Thus, the accel-
eration is mainly achieved by the task parallel scheme rather
than shared memory. However, the speedup achieved by the
task parallel scheme decreases as |V | increases, because the
increase allows the prior method to assign many threads to
MPs, as we do in our method. In contrast, the speedup given
by shared memory increases with |V |. Therefore, we think
that shared memory is useful to deal with larger graphs.

Figure 10 shows timings results for graphs with a differ-
ent number |E| of edges. Every graph has the same num-
ber of vertices: |V | = 4K. These results indicate that all
methods increase the execution time with |E|. In particu-
lar, the shared version of the proposed method shows better
acceleration results as |E| increases. Thus, shared mem-
ory can effectively reduce the number of data reads from
global memory for larger graphs with many edges and ver-
tices. It also should be noted that the proposed method
uses O(BN) space in shared memory, which is indepen-
dent from the graph size |V | and |E|. Thus, the graph size
is limited by the capacity of device memory rather than that

290290290290



Ex
ec

ut
io

n 
tim

e 
(s

)

0

5

10

15

20

25

30

8K 16K 32K 64K 128K 256K 512K
|E |: number of edges

Proposed

Proposed w/o shared memory

Harish

Dijkstra

130.656.6

Figure 10. Timing results with different num-
ber |E| of edges. The number |V | of vertices
is fixed to |V | = 4K.

of shared memory.
Another interesting point in Fig. 10 is that the prior

method decreases execution time when |E| increases from
8K to 16K. This is due to the reduction of kernel launches. It
requires 27 launches per SSSP problem when dealing with
|E| = 8K edges, but this is reduced to 19 launches when
|E| = 16K edges. Similar reductions are also observed
when |E| ≥ 16K. However, they do not significantly affect
the execution time, because each launch takes longer exe-
cution time as |E| increases. Actually, the scattering kernel
has a loop repeated for every outgoing edge and has to up-
date more vertices as |E| increases.

7 Conclusion

We have presented a fast algorithm for solving the APSP
problem on the CUDA-enabled GPU. Our algorithm is
based on an SSSP-based algorithm [4] but has a different
parallelization scheme to exploit the task parallelism in the
APSP problem. The proposed scheme solves multiple SSSP
problems in parallel, leading to an efficient use of on-chip
shared memory. Thus, our task parallel scheme reduces
the amount of data being transferred from off-chip memory.
Furthermore, the scheme can run many threads with less
kernel launches, which is suitable to highly multithreaded
architecture of the GPU.

The experimental results show that our method is 3.4–
15 times faster than the prior method running on the same
GPU. As compared with the prior method, the task paral-
lel scheme shows higher performance for smaller graphs.
However, this advantage becomes smaller when dealing
with larger graphs with more vertices. In contrast, shared
memory increases its effects for larger graphs with more
vertices and edges.

One future work is to store the APSPs themselves be-
cause our method currently computes the costs instead of
the paths.

Acknowledgments

This work was partly supported by JSPS Grant-in-
Aid for Scientific Research (A)(2)(20240002), Young Re-
searchers (B)(19700061), and the Global COE Program
“in silico medicine” at Osaka University. We would like
to thank the anonymous reviewers for their valuable com-
ments.

References

[1] 9th DIMACS implementation challenge - Shortest paths.
http://www.dis.uniroma1.it/∼challenge9/
download.shtml.

[2] U. Bondhugula, A. Devulapalli, J. Dinan, J. Fernando,
P. Wyckoff, E. Stahlberg, and P. Sadayappan. Hard-
ware/software integration for FPGA-based all-pairs shortest-
paths. In Proc. 14th IEEE Symp. Field-Programmable Cus-
tom Computing Machines (FCCM’06), pages 152–164, Apr.
2006.

[3] S.-C. Han, F. Franchetti, and M. Püshel. Program genera-
tion for the all-pairs shortest path problem. In Proc. 15th
Int’l Conf. Parallel Architectures and Compilation Techniques
(PACT’07), pages 222–208, Sept. 2006.

[4] P. Harish and P. J. Narayanan. Accelerating large graph algo-
rithms on the GPU using CUDA. In Proc. 14th Int’l Conf.
High Performance Computing (HiPC’07), pages 197–208,
Dec. 2007.

[5] P. Micikevicius. General parallel computation on commod-
ity graphics hardware: Case study with the all-pairs shortest
paths problem. In Proc. Int’l Conf. Parallel and Distributed
Processing Techniques and Applications (PDPTA’04), vol-
ume 3, pages 1359–1365, June 2004.

[6] A. Nakaya, S. Goto, and M. Kanehisa. Extraction of corre-
lated gene clusters by multiple graph comparison. Genome
Informatics, 12:34–43, Dec. 2001.

[7] nVIDIA Corporation. CUDA Programming Guide Version
1.1, Nov. 2007.

[8] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, Mar. 2007.

[9] T. Srinivasan, R. Balakrishnan, S. A. Gangadharan, and
V. Hayawardh. A scalable parallelization of all-pairs shortest
path algorithm for a high performance cluster environment. In
Proc. 13th Int’l Conf. Parallel and Distributed Systems (IC-
PADS’07), volume 1, Sept. 2006. CD-ROM (8 pages).

291291291291


