
A Decompression Pipeline for Accelerating

Out-of-Core Volume Rendering of

Time-Varying Data

Daisuke NAGAYASU a,b Fumihiko INO a,∗
Kenichi HAGIHARA a

aGraduate School of Information Science and Technology, Osaka University,
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

bOracle Corporation Japan, 4-1 Kioi, Chiyoda, Tokyo 102-0094, Japan

Abstract

This paper presents a decompression pipeline capable of accelerating out-of-core
volume rendering of time-varying scalar data. Our pipeline is based on a two-
stage compression method that cooperatively uses the CPU and GPU (graphics
processing unit) to transfer compressed data entirely from the storage device to
the video memory. This method combines two different compression algorithms,
namely packed volume texture compression (PVTC) and Lempel-Ziv-Oberhumer
(LZO) compression, allowing us to exploit both temporal and spatial coherence in
time-varying data. Furthermore, it achieves fast decompression by taking architec-
tural advantages of each processing unit: a hardware component on the GPU and a
large cache on the CPU, each suited to decompress PVTC and LZO encoded data,
respectively. We also integrate the method with a thread-based pipeline mechanism
to increase the data throughput by overlapping data loading, data decompression,
and rendering stages. Our pipelined renderer runs on a quad-core PC and achieves
a video rate of 41 frames per second (fps) in average for 258× 258× 208 voxel data
with 150 time steps. It also demonstrates an almost interactive rate of 8 fps for
512 × 512× 295 voxel data with 411 time steps.

Key words: Volume rendering, time-varying data, pipelined rendering, data
compression, GPU

∗ Corresponding author. Tel.: +81 6 6850 6597; fax: +81 6 6850 6599.
Email address: ino@ist.osaka-u.ac.jp (Fumihiko INO).

Preprint submitted to Computers & Graphics 30 March 2008

1 Introduction

Volume rendering [1] of time-varying data is capable of producing animation
sequences that show how the three-dimensional (3-D) structure evolves over
time. This visualization technique plays an increasingly important role for the
intuitive understanding of complex time-varying phenomena [2]. For example,
it is useful to interpret simulation results and scanned X-ray images in physical
and life sciences. Thus, real-time rendering of time-varying volume data is
required to assist scientists effectively in time-series analysis.

One challenging issue in time-varying volume visualization is to develop an
efficient mechanism for handling 4-D data. For example, a time-varying volume
of 512×512×512 voxels with a hundred time steps requires 12.5 GB of memory
if each voxel has 1-byte data. Moreover, recent advances in integrated circuits
allow us to produce large-scale datasets, which could not be entirely stored
in the main memory as well as in the video memory. Due to this increasing
data size, we need fast out-of-core rendering systems, which relax memory
requirements by on-demand loading of data.

Data compression techniques also provide an effective solution to the issue
mentioned above. Actually, such techniques are integrated into many render-
ing systems [3–10] to reduce data size. Most of them use the graphics process-
ing unit (GPU) [11] for data decompression. These GPU-based methods [3–7]
are more efficient compared with CPU-based methods [8,9], which might suffer
from low performance due to the raw data transferred from the main memory
to the video memory. In addition, GPU-based methods will be further accel-
erated by future GPUs, because they are rapidly increasing the performance
in terms of floating point operations and memory bandwidth [12].

Although GPUs are becoming flexible with enhancing programmability, their
special-purpose architecture is still a barrier to achieve both fast decompres-
sion and high compression ratio. For example, random accesses are not fast
compared with sequential accesses [13,14], slowing down the processing speed
against complex, irregular computation including branching instructions. Fur-
thermore, GPUs currently do not have large video memory of more than 1.5
GB. Therefore, we need a hybrid method [10] that performs data decompres-
sion both on the CPU and GPU in a cooperative manner. This hybrid method,
which is our main idea, can offload GPU cycles to the CPU without any perfor-
mance loss if the storage device or GPU is kept as a performance bottleneck
after offloading. That is, although this offloading increases the communica-
tion amount between the main memory and the video memory, it will not
degrade the rendering performance if the increased amount does not limit the
data throughput. In addition, the offloading should be applied to a sequence
of operations that are suited to the CPU architecture rather than the GPU

2

architecture.

The objective of our work is to develop an efficient compression mechanism
capable of accelerating out-of-core rendering of time-varying scalar data. To
achieve this, we develop a thread-based decompression pipeline consisting of
two stages, each processed on the CPU and GPU, respectively. We expand
on our preliminary work [10] in this paper, describing how our pipeline mech-
anism accelerates the hybrid method for higher throughput. The difference
to the earlier work [10] is the pipeline mechanism that hides decompression
and rendering costs using a multi-core system. Our decompression pipeline
requires a sequence of double-compressed data as the input, each consisting of
three volumes at successive time steps. The double-compressed data is then
decompressed first by the CPU, and then by the GPU in a pipeline fashion.
Experimental results are also presented to demonstrate the effectiveness of the
pipeline by using a desktop PC equipped with a multi-core CPU.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 gives a brief summary on volume texture compression (VTC) [15]
and LZO compression [16], which are the basis of our decompression pipeline.
Section 4 describes the details of the pipeline with the hybrid method. Section
5 shows experimental results evaluating the pipeline in terms of performance,
scalability, and image quality. Section 6 concludes the paper with future work.

2 Related Work

There are many pipelined rendering systems [17–20] that overlap data load-
ing and rendering stages to increase the rendering rate. Since these systems
deal with raw data, data compression techniques are not integrated into them.
On the other hand, many compression-based systems [3–9] are also proposed
to increase the rendering performance. In these systems, only Bernardon et
al. [9] uses a pipelined system that overlaps decompression with rendering. To
the best of our knowledge, however, there is no work reporting on a pipelined
rendering system that exploits both of the CPU and GPU for decompres-
sion. Thus, it is still not clear how effectively data compression techniques
and pipeline mechanisms contribute to higher performance. Table 1 shows a
classification of existing compression-based systems. As we mentioned earlier,
they can be classified into three groups where data is decompressed: a hybrid
method [10]; GPU-based methods [3–7]; and CPU-based methods [8, 9].

Most of prior systems use only the GPU for data decompression. Akiba et
al. [3] propose a combination of two lossless compression techniques that
exploit spatial coherence. Their system first applies the wavelet transforma-
tion [21] to each volume in order to convert them into a hierarchical represen-

3

tation. This wavelet-based compression allows users to select an appropriate
resolution level according to interactivity and image quality. After this, the
system applies a packing procedure to a selected subset of the low-resolution
data. This procedure partitions the volume into 3-D blocks, which are then re-
duced by replacing the same blocks with pointers to the representative block.
On the other hand, data decompression (unpacking) is done at run-time by a
fragment program running on the GPU. However, this unpacking procedure
could cause random accesses in the worst case, because it exploits the coher-
ence across 3-D blocks. We think that such coherence should be exploited by
the CPU, which has a larger cache with a higher tolerance to lower degrees
of locality. Our system realizes this by performing LZO decompression on the
CPU. Furthermore, the system exploits both temporal and spatial coherence,
although it is a lossy compression.

Binotto et al. [4] also realize a lossless compression method. Their method
partitions the volume into 3-D blocks, which are then reduced by replacing
the same blocks with the representative block. In addition to this spatial co-
herence, temporal coherence is also exploited by replacing blocks between
different time steps. Since this replacement requires an exact match between
different blocks, their method is effective for highly sparse and temporally
coherent data.

Fout et al. [5] realize lossy compression based on vector quantization. Their
system has two modes depending on coherence to be exploited: spatial and
temporal modes. In the spatial mode, their system packs 2×2×2 neighboring
voxels into a vector, and then applies quantization to the vector in order to
approximate it with a representative vector. Schneider and Westermann [6]
also use vector quantization but they exploit both spatial and temporal co-
herence by sharing representatives between successive time steps. Similar to
Akiba’s packing procedure, vector quantization produces representative vec-
tors and pointers to them. Due to the nature of pointers, this sequence can re-
sult in irregular data, which generally decreases compression ratio. Therefore,
when we combine multiple compression methods in a pipeline, such irregular
data should not be generated at the first compression stage in order to avoid
disturbing the second compression method. This also implies that complex
decompression algorithms should be executed on the CPU rather than on the
GPU.

Lum et al. [7] use the discrete cosine transform (DCT) to achieve lossy com-
pression. Their hardware-assisted solution exploits temporal coherence by
transforming data into a set of coefficients. These coefficients are then quan-
tized to create a more compact representation, allowing us to discard coeffi-
cients with higher energy, which are not important in terms of image quality.
Since the discard level can be selected by users, their system is capable of
choosing the appropriate image quality.

4

A CPU-based method is proposed by Strengert et al. [8]. Their system is based
on the wavelet-based compression [22] that exploits spatial coherence at each
time step. It employs the wavelet transformation to generate a hierarchical
octree, which is then compressed by an entropy encoding. During rendering,
it decompresses data on the CPU and then transfers the raw data to the video
memory through the graphics bus. Therefore, the performance of this method
could be limited by the graphics bus especially if we increase the compression
ratio (for higher performance).

Bernardon et al. [9] also use a CPU-based method but they overlap the decom-
pression time with the rendering time. Their system uses vector quantization
to exploit temporal coherence in unstructured grids. Although this system
demonstrates successful overlaps, the decompression stage is processed only
on the CPU. Accordingly, the raw data is transferred through the graphics
bus. To avoid this, we think that the decompression stage itself should be
structured into a pipeline.

Finally, a raw renderer is proposed by Furumura et al. [23] to deal with the
problem of increasing data size. They develop a concurrent technique capable
of processing simulation and visualization at the same time. This concurrent
technique directly accesses the simulation results on the main memory, elim-
inating the need to store huge amounts of data. Therefore, data compression
techniques are not needed for visualization. However, the simulation perfor-
mance can limit the frame rate, because the simulation must be executed at
every frame. In addition, the interactivity in the visualization phase might
be reduced on batch-style high-performance computing systems, which are
needed for the simulation.

3 Preliminaries

3.1 Volume Texture Compression (VTC)

VTC [15] is a lossy compression method that approximates voxel values by
linear interpolation of representative values. This method is supported by
nVIDIA GPUs [11] and is standardized as a part of OpenGL extensions [24].
One remarkable advantage of this method is fast data decompression acceler-
ated by a hardware component on the GPU. Although VTC has four modes in
terms of the format of input data, we only explain the COMPRESSED RGB
S3TC DXT1 EXT mode in this paper, which compresses 24-bit RGB data.
We use this mode as an underlying method for our pipeline, because it has
the highest compression ratio of 6:1.

5

Fig. 1 shows an overview of VTC. Given a volume in the RGB format, VTC
partitions the volume into 4 × 4 × 1 voxel blocks B1, B2, . . . , BN , which are
then applied to an approximation algorithm to generate compressed data.
This algorithm replaces each Bk (1 ≤ k ≤ N) of the blocks, namely 16 voxel
values v1,1, v1,2, · · · , v4,4, with a compressed block B′

k containing (1) two rep-
resentative values Rk = 〈c1, c2〉 in 4 bytes and (2) an interpolation table
Tk = {mi,j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4} in 4 bytes, where mi,j in 2 bits repre-
sents the approximation mode for voxel vi,j. Since mi,j has 2-bits information,
four approximation modes are predefined [15, 25]: c1, c2, (2c1 + c2)/3, and
(c1 +2c2)/3. For example, if the algorithm determines that the value for voxel
vi,j should be approximated by (2c1+c2)/3, then it stores mi,j = 2 in table Tk,
according to the predefined scheme. This linear interpolation is independently
applied to every block, so that each block has a different table Tk. Therefore,
VTC exploits spatial coherence in a small 4× 4× 1 block.

In contrast to the encoding scheme mentioned above, the decoding scheme
returns the approximated value by linear interpolation of two representative
values c1 and c2. For example, it returns (2c1 + c2)/3 as the value of voxel
vi,j if mi,j = 2. Note that this interpolation is quickly done by the on-the-fly
decoder implemented as a hardware component. In addition, the on-the-fly
decompression does not require additional memory to store the decompressed
data, because the entire volume is not decompressed at a time. The GPU also
exploits two parallelisms to further accelerate this decompression: (1) single
instruction multiple data (SIMD) instructions [26] and (2) vector instructions,
allowing us to simultaneously process multiple voxels in a volume and mul-
tiple RGB channels in a single voxel, respectively. As compared with SIMD
instructions, vector instructions are useful to increase the data granularity,
which contributes to the full utilization of memory bandwidth.

3.2 Lempel-Ziv-Oberhumer (LZO) Compression

LZO [16] is a real-time data decompression/compression library based on a
lossless compression algorithm. This library uses a dictionary coder [27], which
scans the input data to replace repeating data with references back to the
original data. During this scan, a sliding window keeps recent scanned data
to perform a replacement operation when a longest match is found in the
window. Therefore, LZO obtains high compression ratio if the same data se-
quence frequently appears in the window. Similar to VTC, LZO has multiple
compression modes. In this paper, LZO denotes LZO1X-1, which is regarded
as the fastest mode in most cases.

Note that the LZO library provides fast decompression, because it does not
require complex operations to decode data. It simply replicates the original

6

data to places where the references exist. In addition, this replication can be
quickly done if the sliding window is stored entirely in a CPU cache. Actually,
the LZO library has a 64-KB window, which can be stored in an L2 cache.
In addition to this cache optimization, the LZO library has a hash table for
search acceleration.

4 Decompression Pipeline

We now describe our decompression pipeline designed on the basis of com-
pression methods presented in Section 3. We first show the design aspects
of our pipeline, and then describe the hybrid method [10] and the pipeline
mechanism.

Fig. 2 shows an overview of the hybrid method. As we mentioned in Section 1,
the key idea of this method is to perform data decompression both on the CPU
and the GPU. To realize this, we combine two different compression methods,
Mc and Mg, each running on the CPU and GPU, respectively. Therefore,
the raw data must be converted into double-compressed data in advance of
rendering. To do this, the hybrid method compresses the raw data first by
Mg, and then by Mc. During the visualization phase, this double-compressed
data is decompressed by applying the decompression methods in the opposite
order: first by the CPU, and then by the GPU.

We also develop a pipeline mechanism in order to overlap data loading, data
decompression, and rendering stages. This mechanism increases rendering
throughput, because it allows us to process successive data simultaneously at
different pipeline stages. In addition, the pipeline mechanism contributes to
hide the decompression overhead incurred on the CPU. In our hybrid method,
this overhead is due to the cycles offloaded from the GPU. Therefore, we think
that the pipeline mechanism is essential to maximize the effectiveness of the
hybrid method.

4.1 Design Aspects

Compression methods Mc and Mg must satisfy the following three require-
ments to achieve fast volume rendering of time-varying data.

R1. Both Mc and Mg achieve a compression ratio sufficiently high to pay
decompression cost T2, where T2 represents the time for data decompression.

R2. Mc and Mg exploit different coherences.

7

R3. Mg outputs a sequence of data such that it keeps the coherence that will
be exploited later by Mc.

The first requirement R1 is a general constraint to compression methods. This
requirement implies that there is a tradeoff relation between compression ratio
and decompression time. From this viewpoint, although a high-compression
method significantly reduces the loading time T1, it is not satisfactory if it
fails to reduce the total time T1 + T2.

On the other hand, the remaining requirements R2 and R3 are inherent in hy-
brid (two-stage) compression methods. Requirement R2 indicates that it is not
effective if similar compression methods are repeatedly applied to the volume
data. For example, a combination of a temporal encoder and a spatial encoder
satisfies this requirement, because they focus on independent coherences. Re-
quirement R3 comes from the nature of sequential execution of methods Mc

and Mg. For example, Mc and Mg are not a good pair if Mg destroys the
coherence which Mc exploits later in the second compression stage.

4.2 Hybrid Compression

To satisfy requirements R1, R2, and R3, our hybrid method uses packed vol-
ume texture compression (PVTC) [10] for Mg and LZO [16] for Mc. PVTC
is a lossy compression method for time-varying volume data containing scalar
values. It extends VTC [15] to exploit temporal coherence in time-varying
data. Using PVTC and LZO, the hybrid method iteratively compresses three
successive volumes from the beginning of volume sequence. In the following
discussion, let Vt denote the volume at time step t, where 0 ≤ t < tmax. Let
Vt(x, y, z) denote the voxel value of point (x, y, z) in volume Vt. Then, the
compression procedure can be written as follows.

(1) t← 0.
(2) Data packing. Fig. 3 illustrates this step. Given three successive raw

volumes Vt, Vt+1, and Vt+2, the method packs them into RGB data to
obtain a packed volume C�t/3�. To do this, three scalar values Vt(x, y, z),
Vt+1(x, y, z), and Vt+2(x, y, z) in the same location are copied to R, G, and
B channels of C�t/3�(x, y, z), respectively. Here, C�t/3�(x, y, z) represents
the voxel value of point (x, y, z) in C�t/3�. Empty values are padded if
tmax mod 3 �= 0.

(3) Data compression by VTC. The packed volume C�t/3� is given to a VTC
encoder to obtain a compressed texture X�t/3�.

(4) Data compression by LZO. The compressed texture X�t/3� is given to a
LZO encoder to obtain a double-compressed texture Z�t/3�.

(5) t← t + 3. Goto step (2) if t < tmax.

8

The combination of PVTC and LZO satisfies requirement R2, because PVTC
and LZO focus on different coherences. That is, PVTC exploits temporal and
spatial coherence in a small 4× 4× 1 block. On the other hand, LZO exploits
spatial coherence across small blocks, because it receives PVTC compressed
textures as inputs. Here, the sliding window in the LZO library covers 8192
VTC compressed blocks at a time, which is equivalent to 512× 256× 1 RGB
voxels. Therefore, LZO compression can be regarded as a slice-based compres-
sion if a volume consists of 512 × 512 voxel slices. In this sense, LZO and
PVTC do not exploit exactly the same coherence, though they exploit spatial
coherence.

With respect to requirement R3, this requirement can be satisfied as follows.

• PVTC can keep the coherence between different blocks in the input volume,
because it will encode similar blocks into compressed blocks with similar
representative values and interpolation tables. Thus, the coherence between
blocks in the raw volume is also kept in compressed data for later LZO
compression.
• The coherence mentioned above is expressed in the format of compressed

data, because PVTC produces fixed-size data for each block in first-in, first-
out (FIFO) order.

From the viewpoint of architectural design, our combination aims at achieving
fast decompression by taking advantage of GPU and CPU architectures. For
example, as we mentioned in Section 3.1, the GPU has hardware acceleration
capabilities which the CPU does not have. On the other hand, the CPU has
a larger cache as compared with the texture cache on the GPU. This larger
cache is suited to duplicating operations in LZO decompression, because these
operations refer to a large area in the sliding window. Actually, the cache
working set in an nVIDIA GeForce 8800 GTX card is 8 KB per multiprocessor
[28], and thus the entire window cannot be stored in the texture cache. In
summary, the CPU cooperates with the GPU by providing a larger cache to
accelerate decompression for large area.

4.3 Pipelined Data Decompression

Once the raw data is converted into double-compressed textures, our pipelined
renderer repeatedly decompresses them during visualization. Note that PVTC
allows us to load data at every three time steps, because each of PVTC com-
pressed textures contains time-series data. The decompression scheme can be
written as follows (see also Fig. 4).

S0. t← 0.

9

S1. Data loading from the storage device. A double-compressed texture Z�t/3�
is transferred from the hard disk to the main memory.

S2. Data decompression by LZO. The CPU decompresses Z�t/3� to obtain a
compressed texture X�t/3�.

S3. Texture-based volume rendering [29, 30] on the GPU.
(a) Texture transfer. X�t/3� is transferred from the main memory to the

video memory.
(b) Data decompression by PVTC. For all voxels (x, y, z), the approxi-

mated value Ṽt(x, y, z) is automatically obtained by simply accessing
the appropriate channel of packed voxel C�t/3�(x, y, z). That is, the
VTC decoder returns R, G, or B channel data if t mod 3 = 0, 1,
or 2, respectively. Note that this branching instruction can be elim-
inated from fragment programs. Instead of fragment processors, the
CPU performs this by binding the appropriate fragment program
that refers one of R, G, or B channel data.

(c) Data classification by a transfer function. The final color and opacity
of Ṽt(x, y, z) are determined by a transfer function.

(d) t← t + 1. Goto step (b) if t mod 3 �= 0.
S4. t← 0 if t ≥ tmax. Goto stage S1.

The above stages S1, S2, and S3 are overlapped by our pipeline mechanism,
as shown in Fig. 4. To realize this mechanism by software, we use the POSIX
thread library [31]. Fig. 5 shows a pseudocode of the mechanism. We create
three threads, each responsible for processing one of the three stages. This
mechanism is thread-safe if it satisfies the following conditions C1 and C2
during execution.

C1. For all time steps t, where 0 ≤ t < tmax, the volume at time step t is
processed sequentially from stage S1 to stage S3.

C2. The rendering thread produces images in an ascending order of time step
t.

To satisfy condition C1, we create threads such that each of the threads is
blocked with pthread cond wait() until it receives a signal from the previous
thread in the pipeline. This previous thread, on the other hand, sends a signal
to the next thread when it finishes an incoming task. In addition, the render-
ing thread sends a wake-up signal to the loading thread after completing a
rendering task.

Condition C2 is essential to guarantee that the stream data cannot pass each
other. If we lack this condition, we cannot build a correct pipeline on threads.
This condition can be satisfied by a FIFO policy. To realize this, each thread
has variable “tstep,” which stores the latest time step processed at the cor-
responding stage. This information is then used to prevent the stream data
from overtaking each other. That is, a thread is allowed to process the data if

10

it has already been processed by the previous threads. Otherwise, the thread
will be blocked with pthread cond wait() placed in a while loop.

Finally, once the time-varying data is sent to the GPU, the final image will be
quickly generated by the GPU. We employ a texture-based rendering method
[29,30], which is fully accelerated by hardware components in the GPU, such as
texture mapping and alpha blending hardware. We currently use 3-D textures
rather than 2-D textures, because 2-D textures consume three times more
memory [30] needed for a copy of the dataset for each orientation. Although
this might be a trivial problem for rendering of non-time-varying data, it is
critical for out-of-core (data-intensive) rendering.

5 Experimental Results

In order to evaluate the proposed pipeline in terms of performance, scalability,
and image quality, we implemented it using the C++ language, the OpenGL
library [24], the Cg toolkit [32], and the POSIX thread library [31]. For ex-
periments, we use a desktop PC equipped with 2 GB of main memory and a
320GB SATA disk device. This PC has a Core 2 Quad CPU running at 2.66
GHz clock speed and an nVIDIA Quadro FX 4600 card having 768 MB of
video memory. The graphics card is connected to a PCI Express 16X bus. The
experiments are performed using Windows XP with driver version 162.55.

Table 2 summarizes six datasets D1–D6 used for experiments. Datasets D4,
D5, and D6 are high-resolution versions of datasets D1, D2, and D3, respec-
tively. See also Fig. 6 for their visualization results. Datasets D1 and D2 [33]
are fluid dynamics data showing a turbulent jet and a turbulent vortex flow,
respectively. Both datasets have low temporal coherence due to moving ob-
jects. However, dataset D1 has high spatial coherence at any time step, be-
cause it consists of many transparent voxels. Dataset D3 shows a sequence
of lung deformations. It represents a deformation process of nonrigid regis-
tration [34, 35] that aligns a lung dataset to another dataset obtained at a
different time. These datasets are slightly different from each other due to
breathing. Since the deformations are small, this dataset has high temporal
coherence. All datasets have voxels of 1-byte scalar data.

Table 2 also shows the compression ratio for each dataset. As we mentioned in
Section 4.2, PVTC is a lossy compression based on VTC, which has the com-
pression ratio of 6:1. On the other hand, the combination of PVTC and LZO
compression contributes to further reduction of the data size: the highest ratio
of 12:1 and the lowest ratio of 1.1:1, each obtained by LZO compression. Thus,
the total compression ratio ranges from 6.5:1 to 71.7:1 after LZO compression.
However, LZO compression is not effective for dataset D2. The coherence in

11

this dataset is not high, so that the match found in the sliding window is
not long enough to obtain a high compression ratio. Actually, the compres-
sion ratio is at most 1.1:1 even if we apply LZO compression directly to D2,
without PVTC. This indicates that the data originally lacks spatial coherence,
thus, we think that the compression ratio of 6.5:1 is not due to PVTC, which
keeps coherence that will be exploited by LZO compression. We also think
that hardware supported compression methods such as PVTC, even though
they are lossy, are essential to achieve fast rendering for low-coherence data.

5.1 Rendering Performance

To evaluate the performance gain of the proposed pipeline, we now compare
it with three methods: (1) a straightforward method that transfers raw data
from the storage device to the video memory; (2) a GPU-based method that
uses PVTC on the GPU but no compression method on the CPU; and (3) a
hybrid method [10] that is not structured in a pipeline.

Fig. 7 shows average frame rates for all methods. Datasets are rendered on
a screen with an appropriate size: a 256× 256 pixel screen for D1 and D2; a
512 × 512 pixel screen for D3, D4, and D5; and a 1024 × 1024 pixel screen
for D6. The viewing direction is initially set to z-axis direction, and then it
is rotated 2 degrees around x- and y-axes when the time step is updated. For
every measurement, we rebooted the machine so that disk cashes are cleaned
before measurement. Thus, the frame rates in our experiments are mainly
determined by the compression ratio and the volume size rather than the
number tmax of time steps (see also Section 5.2).

Our pipelined hybrid method achieves a video rate of 41 frames per second
(fps) for dataset D4: 258× 258× 208 voxel data with 150 time steps. It also
demonstrates an almost interactive rate of 8 fps for the largest dataset D6:
512 × 512 × 295 voxel data with 411 time steps. As compared with prior
results [3, 10, 36], these performance results are obtained using more recent
hardware with more CPUs, but we think that our results are reasonable in
performance. For example, Akiba et al. [3] achieves 1.1 fps for 256×256×1024
voxel data with 400 time steps. Fout et al. [36] reports approximately 6 fps
for non-time-varying data of 512× 512× 512 voxels.

For all datasets, our pipeline mechanism achieves 33–122% improvement over
the hybrid method, which achieves 3.3–7.4 times higher rendering performance
than the raw renderer. The pipeline also achieves 62–201% improvement over
the GPU-based method. One interesting point here is that the hybrid method
fails to improve the performance for dataset D2, as compared with the GPU-
based method. This means that LZO compression fails to obtain higher com-

12

pression ratio due to the lack of higher coherence. Actually, Table 2 shows that
the total compression ratio of 6.5:1 is mostly obtained by PVTC. Despite this
fact, the pipeline mechanism increases the rendering rate from 66 fps to 111
fps. Therefore, we think that the pipeline mechanism is essential to maximize
the timing advantage of the hybrid method.

Fig. 8 shows the average execution time T and its breakdown normalized to a
single time-step data: (1) average time T ′

1 spent for data loading at stage S1;
(2) average time T ′

2 spent for LZO decompression at stage S2; (3) average time
T ′

3 spent for texture transfers at stage S3(a); and (4) average time T ′
4 spent

for texture-based rendering at stage S3 except texture transfers. Note that the
execution time T for the pipelined hybrid method does not equal to the sum
of breakdown T ′

1 . . . T ′
4, because each breakdown is measured concurrently on

the corresponding thread.

We first compare the pipelined hybrid method with the hybrid method to
analyze the effects of the pipeline mechanism. In the hybrid method, overheads
T ′

1 . . . T ′
4 account for most of the entire time T . In contrast, the pipelined hybrid

method overlaps these four overheads, reducing execution time T . Actually,
we can see that time T is smaller than the total of time T ′

1 . . . T ′
4 in Fig. 8.

Thus, this overlap explains the 33–122% improvement mentioned before. In
many cases, the pipeline mechanism reduces the entire time T roughly to
time T ′

1, because data loading operations at stage S1 is usually a performance
bottleneck in the pipeline. Therefore, the decompression cost T ′

2 is usually
hidden by time T ′

1 in our pipeline. Thus, the pipeline mechanism is capable of
hiding the overheads of the hybrid method by overlapping overhead T ′

2 with
other overheads. It also should be noted that the thread-related overheads
are much smaller than the entire time T . The overheads can be estimated by
comparing time T ′

1 + T ′
2 + T ′

3 + T ′
4 between the pipelined hybrid method and

the hybrid method.

We next analyze the effects of data compression methods. In Fig. 8, we can
see that the GPU-based method achieves 3.0–3.8 times higher performance as
compared with the straightforward method. This improvement is achieved by
the reduction of data size, which decreases loading time T ′

1. Due to the same
reason, the hybrid method also achieves 1.2–2.0 times higher performance
than the GPU-based method, for all datasets except D2. For dataset D2,
the hybrid method fails to show the performance gain over the GPU-based
method, due to the lower compression ratio. Therefore, the hybrid method
slightly reduces loading time T ′

1, but it has longer execution time T due to
additional decompression overhead T ′

2.

Fig. 8 also indicates that most of execution time T is spent for loading op-
erations if we do not use compression methods. Therefore, overlapping the
loading stage with other stages is not so effective in this case. Thus, we must

13

reduce loading time T ′
1 by using compression methods in order to maximize the

effectiveness of the pipeline mechanism. Note that loading time T ′
1 is mainly

limited by the seek time of the storage device if we render small datasets, such
as D1 and D2. Actually, the seek time of our storage device (Western Digital
WD3200AAKS) is 8.9 ms, which is close to loading time T ′

1 (approximately
10 ms) in Fig. 8.

We next analyze the behavior of the pipelined hybrid method. Fig. 9 shows a
timeline chart explaining how the pipeline renders dataset D5 on the multi-
core PC. This chart is generated from a trace file obtained from an execution of
an instrumented program. Although the pipeline runs sequentially for the first
three time steps, it is fully parallelized after time step 6. Thus, three threads
are running simultaneously on a multi-core CPU, showing an effective utiliza-
tion of computing resources. We think that such a parallel implementation is
important to realize a full utilization in future many-core machines.

Finally, Fig. 10 presents the time-varying properties of the pipelined hybrid
method in terms of the compression ratio and the rendering performance.
It shows that the first time step is rendered at approximately 10 fps, due
to the lack of pipeline effects (latency hiding). Since our pipeline transfers a
collection of three time steps at a time, the rendering performance decreases
when the rendering thread loads a compressed texture from the main memory.
Fig. 10 shows that this periodical behavior actually occurs at every three time
steps. To resolve this problem, we must split the rendering thread into two
different threads: one for texture transfer at stage S3(a); and the other for the
remaining stages S3(b)–(d). This modification will improve the performance
on a quad-core machine, because it allows us to prefetch a compressed texture
while rendering the current volume. Thus, we can overlap time T ′

3 with T ′
4.

With respect to the compression ratio, it shows an irregular behavior in Fig.
10(a), but the rendering performance shows a periodical behavior. This means
that the pipeline mechanism successfully hides the irregularity at the loading
and decoding stages. However, our pipeline cannot hide the overhead incurred
at the rendering stage, namely the last stage in the pipeline. For example, we
observe that the cgGLBindProgram() function called for program switching
by the rendering thread spends longer time every after two successive calls of
the function. This explains why the rendering performance decreases at time
step t, as compared to time step t − 1, where t mod 3 = 2. Due to the same
reason, the entire performance can vary according to the viewing point and
direction.

14

5.2 Scalability Analysis

We first analyze the scalability of our system in terms of the capacity. Let
n be the volume size. The system assumes that the video memory is large
enough to store a compressed texture X�t/3�, where 0 ≤ t < tmax. Since X�t/3�
is generated from three raw volumes Vt, Vt+1, and Vt+2 with a compression
ratio of 6:1, a compressed texture requires n3/2 memory space. Therefore, we
need at least 512 MB of video memory to render 1024 × 1024 × 1024 voxel
data. In other words, 512 MB of video memory is not sufficient to render such
data, because it lacks the memory space for frame buffer. Thus, we think that
the maximum cubic size is limited by 1024 × 1024 × 1024 voxels on current
graphics cards.

We next analyze how the rendering performance is affected by the multi-
level storage hierarchy consisting of the disk device, main memory, and video
memory. Let σ be the compression ratio obtained by the hybrid method. Let
s = n3/2τ be the file size of a double-compressed data, where τ = σ/6 rep-
resents the compression ratio obtained by LZO. Let F be the average frame
rate for a single time step. Since the bottleneck stage in the pipeline limits
the frame rate, the frame rate is given by:

F = 1/max(T ′
1, T

′
2, T

′
3 + T ′

4). (1)

Each of times T ′
1 . . . T ′

4 can be simply modeled as follows: the loading thread
receives s/3 data in average from the disk device; the decoding thread receives
the s/3 data and then sends sτ/3 data; the rendering thread receives the sτ/3
data and then loads O(n3) single-precision data to produce the image. We
assume here that the rendering cost is proportional to the number of voxels
in a raw volume. Therefore, we obtain

T ′
1 = s/3B1, (2)

T ′
2 = s(1 + τ)/3B2, (3)

T ′
3 = sτ/3B3, (4)

T ′
4 = 2Ksτ/B4, (5)

where K represents the coefficient of the rendering cost and B1 . . . B4 represent
the throughput of data loading, that of LZO decoding, that of texture transfer,
and that of rendering, respectively. Equations (2)–(5) indicate that the volume
size n does not determine the bottleneck stage in the pipeline. The bottleneck
stage is determined by the compression ratio τ of LZO and by the throughputs
B1 . . . B4.

The throughputs can be estimated by using the measured values of compres-

15

sion ratio and execution time presented in Table 2 and Fig. 8, respectively.
According to this estimation, the lowest throughputs we obtained are as fol-
lows: B1 = 13; B2 = 452; B3 = 205; and B4 = 1352K. Using these measured
throughputs and Equations (2)–(5), we obtain the following relations:

T ′
1 > T ′

2 ≥ T ′
3 + T ′

4, if τ ≤ 0.3, (6)

T ′
1 ≥ T ′

3 + T ′
4 > T ′

2, if 0.3 < τ ≤ 8.3, (7)

T ′
3 + T ′

4 > T ′
1 > T ′

2, if 8.3 < τ < 33.8, (8)

T ′
3 + T ′

4 > T ′
2 ≥ T ′

1, otherwise. (9)

In summary, the loading thread or the rendering thread can be a performance
bottleneck in our desktop PC. The rendering thread determines the frame rate
F when the compression ratio σ is higher than 49.8:1. Otherwise, the loading
thread determines the frame rate F .

Actually, Figs. 8(c) and (f) show that the rendering thread becomes a perfor-
mance bottleneck when viewing datasets D3 (σ = 67.0) or D6 (σ = 71.7). In
particular, this bottleneck is critical if we render higher resolution data such as
512×512×512 voxel data. Therefore, we think that 512×512×512 voxel data
is the maximum volume size that can be interactively rendered by our current
system. We also think that this size will be increased by future GPUs, which
achieve shorter rendering time T ′

4 and transfer time T ′
3 by a higher memory

bandwidth and by a new graphics bus, respectively.

5.3 Image Quality

In order to evaluate the quality of rendered images, we measure PSNR (peak
signal-to-noise ratio) values and analyze the error distribution. A higher PSNR
value here represents higher quality with less noise. In general, PSNR values
of at least 30 dB are desired for rendered images. As a rule of thumb, a
PSNR value over 40 dB indicates that the image is very close to the original
and a value between 30 to 40 dB means that the distortion is visible but
acceptable [37].

Fig. 11 shows PSNR values measured for each dataset. For all datasets, we
observe PSNR values of more than 33 dB. These results are competitive to
prior work [7, 36] that achieves similar quality ranging from 28 to 49 dB.
Fig. 12 shows the breakdown of pixel errors in produced images. It represents
how exactly the hybrid method produces the original pixels. In most cases,
more than 95% of pixels have an error within pixel value 3, as compared with
the exact image produced from raw data. We think that this distribution is
acceptable because pixel values are in the range [0,255].

16

Fig. 13 shows two pairs of images, each produced from the raw data and from
the PVTC compressed data. Fig. 14 shows subtraction images produced from
each pair. By comparing them in zoomed views, we can see some artifacts
in Fig. 13(b) and Fig. 13(d), especially where neighboring pixels do not have
similar values. More precisely, we can see a glow effect or rim in the lower right
of the zoomed subimage in Fig. 13(b), where this is not a case in Fig. 13(a).
This artifact could mislead the user into a different interpretation of simulation
results when the original data is not available for comparison. Nevertheless,
these artifacts do not significantly change the overall appearance of produced
images. Thus, we think that the image quality of PVTC is tolerable for time-
series analysis.

6 Conclusion

We have presented a decompression pipeline for accelerating volume rendering
of time-varying scalar data. The proposed pipeline is based on a hybrid com-
pression method and a thread-based pipeline mechanism. The hybrid method
uses a combination of two different compression methods, namely PVTC and
LZO compression, each running on the GPU and on the CPU. Our combina-
tion is designed to exploit both temporal and spatial coherence in time-varying
data. It also makes a good use of hardware components on the GPU and a
large cache on the CPU. The pipeline mechanism overlaps data loading, data
decompression, and rendering stages, in order to increase the rendering rate.

Experimental results show that our pipelined method achieves a video rate
of 41 fps in average for 258 × 258 × 208 voxel data with 150 time steps. It
also demonstrates an almost interactive rate of 8 fps for 512 × 512 × 295
voxel data with 411 time steps. Our pipeline mechanism achieves 33–122%
improvement over the nonpipelined hybrid method, which achieves 3.3–7.4
times higher rendering performance than the raw renderer. We also find that
most of the execution time is spent for loading operations if we do not use
compression methods. Therefore, we think that loading time must be reduced
by compression methods in order to maximize the performance benefit of the
pipeline mechanism. Furthermore, the pipeline mechanism is also useful to hide
the decompression overhead inherent in multi-stage compression methods.

One future work is to develop an adaptive framework for visualization of higher
resolution data. Although our compression pipeline provides an effective so-
lution to visualization of large time-step data, it assumes that the capacity
of video memory is large enough to store the entire of a compressed texture.
A scalable, parallelization scheme [38] will be useful to reduce the memory
requirement for a graphics card. We also think that a multiresolution data
structure [39] contributes to progressive visualization that increases the inter-

17

activity for large volume.

Acknowledgments

This work was partly supported by MEXT Grant-in-Aid for Scientific Research
for Young Researchers (19700061), JSPS Grant-in-Aid for Scientific Research
(B)(2)(18300009), and the Global COE Program “in silico medicine” at Osaka
University. We are also grateful to the anonymous reviewers for their valuable
comments.

References

[1] M. Levoy, Display of surfaces from volume data, IEEE Computer Graphics and
Applications 8 (3) (1988) 29–37.

[2] K.-L. Ma, Visualizing time-varying volume data, Computing in Science and
Engineering 5 (2) (2003) 34–42.

[3] H. Akiba, K.-L. Ma, J. Clyne, End-to-end data reduction and hardware
accelerated rendering techniques for visualizing time-varying non-uniform grid
volume data, in: Proc. 4th Int’l Workshop Volume Graphics (VG’05), 2005, pp.
31–39.

[4] A. P. Binotto, J. L. Comba, C. M. Freitas, Real-time volume rendering of time-
varying data using a fragment-shader compression approach, in: Proc. 6th IEEE
Symp. Parallel and Large-Data Visualization and Graphics (PVG’03), 2003, pp.
69–76.

[5] N. Fout, K.-L. Ma, J. Ahrens, Time-varying, multivariate volume data
reduction, in: Proc. 20th ACM Symp. Applied Computing (SAC’05), 2005, pp.
1224–1230.

[6] J. Schneider, R. Westermann, Compression domain volume rendering, in: Proc.
14th IEEE Visualization Conf. (VIS’03), 2003, pp. 293–300.

[7] E. B. Lum, K.-L. Ma, J. Clyne, A hardware-assisted scalable solution for
interactive volume rendering of time-varying data, IEEE Trans. Visualization
and Computer Graphics 8 (3) (2002) 286–301.

[8] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, T. Ertl, Large volume
visualization of compressed time-dependent datasets on GPU clusters, Parallel
Computing 31 (2) (2005) 205–219.

[9] F. F. Bernardon, S. P. Callahan, J. L. Comba, C. T. Silva, An adaptive
framework for visualizing unstructured grids with time-varying scalar fields,
Parallel Computing 33 (6) (2007) 391–405.

18

[10] D. Nagayasu, F. Ino, K. Hagihara, Two-stage compression for fast volume
rendering of time-varying scalar data, in: Proc. 4th Int’l Conf. Computer
Graphics and Interactive Techniques in Australasia and Southeast Asia
(GRAPHITE’06), 2006, pp. 275–284.

[11] J. Montrym, H. Moreton, The GeForce 6800, IEEE Micro 25 (2) (2005) 41–51.

[12] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
T. J. Purcell, A survey of general-purpose computation on graphics hardware,
Computer Graphics Forum 26 (1) (2007) 80–113.

[13] I. Buck, K. Fatahalian, P. Hanrahan, GPUBench: Evaluating GPU performance
for numerical and scientific applications, in: Proc. 1st ACM Workshop General-
Purpose Computing on Graphics Processors (GP2’04), 2004, p. C-20.

[14] B. He, N. K. Govindaraju, Q. Luo, B. Smith, Efficient gather and scatter
operations on graphics processors, in: Proc. High Performance Networking and
Computing Conf. (SC’07), 2007, 12 pages (CD-ROM).

[15] OpenGL Extension Registry, Gl nv texture
compression vtc, http://oss.sgi.com/projects/ogl-sample/registry/NV/
texture compression vtc.txt (2004).

[16] M.F.X.J. Oberhumer, LZO real-time data compression library, http://www.
oberhumer.com/opensource/lzo/ (Oct. 2005).

[17] H. Yu, K.-L. Ma, A study of I/O methods for parallel visualization of large-scale
data, Parallel Computing 31 (2) (2005) 167–183.

[18] T. Chiueh, K.-L. Ma, A parallel pipelined renderer for time-varying volume
data, in: Proc. 2nd Int’l Symp. Parallel Architectures, Algorithms and Networks
(I-SPAN’97), 1997, pp. 9–15.

[19] W. Bethel, B. Tierney, J. Lee, D. Gunter, S. Lau, Using high-speed WANs and
network data caches to enable remote and distributed visualization, in: Proc.
High Performance Networking and Computing Conf. (SC’00), 2000.

[20] X. Cavin, C. Mion, A. Filbois, COTS cluster-based sort-last rendering:
Performance evaluation and pipelined implementation, in: Proc. 16th IEEE
Visualization Conf. (VIS’05), 2005, 8 pages (CD-ROM).

[21] J. Clyne, The multiresolution toolkit: Progressive access for regular gridded
data, in: Proc. 3rd IASTED Int’l Conf. Visualization, Imaging, and Image
Processing (VIIP’03), 2003, pp. 152–157.

[22] S. Guthe, M. Wand, J. Gonser, W. Straßer, Interactive rendering of large volume
data sets, in: Proc. 13th IEEE Visualization Conf. (VIS’02), 2002, pp. 53–60.

[23] T. Furumura, L. Chen, Parallel simulation of strong ground motions during
recent and historical damaging earthquakes in tokyo, japan, Parallel Computing
31 (2) (2005) 149–165.

19

[24] D. Shreiner, M. Woo, J. Neider, T. Davis, OpenGL Programming Guide, 5th
Edition, Addison-Wesley, Reading, MA, 2005.

[25] OpenGL Extension
Registry, Gl ext texture compression dxt1, http://oss.sgi.com/projects/
ogl-sample/registry/EXT/texture compression dxt1.txt (2004).

[26] A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel
Computing, 2nd Edition, Addison-Wesley, Reading, MA, 2003.

[27] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Information Theory 23 (3) (1977) 337–343.

[28] nVIDIA Corporation, CUDA Programming Guide Version 1.1, http://
developer.nvidia.com/cuda/ (Nov. 2007).

[29] B. Cabral, N. Cam, J. Foran, Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware, in: Proc. 4th Symp. Volume
Visualization (VVS’94), 1994, pp. 91–98.

[30] M. Hadwiger, J. M. Kniss, K. Engel, C. Rezk-Salama, High-quality volume
graphics on consumer PC hardware, in: SIGGRAPH 2002, Course Notes 42,
2002.

[31] B. Nichols, B. Buttlar, J. P. Farrell, Pthreads Programming, O’Reilly &
Associates, Newton, MA, 1996.

[32] W. R. Mark, R. S. Glanville, K. Akeley, M. J. Kilgard, Cg: A system for
programming graphics hardware in a C-like language, ACM Trans. Graphics
22 (3) (2003) 896–897.

[33] K.-L. Ma, Time-Varying
Volume Data Repository, http://www.cs.ucdavis.edu/∼ma/ITR/tvdr.html
(2003).

[34] J. V. Hajnal, D. L. Hill, D. J. Hawkes (Eds.), Medical Image Registration, CRC
Press, Boca Raton, FL, 2001.

[35] F. Ino, K. Ooyama, K. Hagihara, A data distributed parallel algorithm for
nonrigid image registration, Parallel Computing 31 (1) (2005) 19–43.

[36] N. Fout, K.-L. Ma, Transform coding for hardware-accelerated volume
rendering, IEEE Trans. Visualization and Computer Graphics 13 (6) (2007)
1600–1607.

[37] Y. Wang, J. Ostermann, Y.-Q. Zhang, Video Processing and Communications,
Prentice Hall PTR, Upper Saddle River, NJ, 2001.

[38] H. Childs, M. Duchaineau, K.-L. Ma, A scalable, hybrid scheme for volume
rendering massive data sets, in: Proc. 6th Eurographics Symp. Parallel Graphics
and Visualization (EGPGV’06), 2006, pp. 153–162.

[39] E. LaMar, B. Harmann, K. I. Joy, Multiresolution techniques for interactive
texture-based volume visualization, in: Proc. 10th IEEE Visualization Conf.
(VIS’99), 1999, pp. 355–361.

20

24 bits per voxel

Bk: voxel block
(48 bytes)

Tk:
Interpolation

table (4 bytes)

Rk:
Representative RGB

colors (4 bytes)

Approximation

v1,1

+

2 bits per voxel representing
interpolation modes

m1,1
c1

c2

Partition

...

...
...

...
4 x 4 x 1 voxel block B1

BN
Approximation

...

...
...

...

Compressed
voxel block B’1

B’N
Volume in RGB format

v4,4
m4,4

Compressed RGB texture

 B’k: Compressed voxel block (8 bytes)

Fig. 1. Volume texture compression (VTC).

Storage

CPU

GPU

Preprocessing phase Visualization phase

Vt: Raw volume

Xt: Compressed texture

Zt: Double-compressed texture

Vt: Approximated volume
~

Mg: Compression method for the GPU (PVTC)

Mc: Compression method for the CPU (LZO)

Fig. 2. Overview of hybrid compression method. This method uses two different
compression methods, Mc and Mg, each running on the CPU and the GPU, respec-
tively. Note that raw data must be compressed in advance of visualization.

21

Vt+2(x,y,z)

Vt (x,y,z)

Vt+1(x,y,z)

VTC

B
G

R

R G B
t t+1 t+2

Block 1

R G B
t t+1 t+2

Block 2

...

...

...
...

...

Compressed voxel block each
containing time-series data

Data packing

C t/3 (x,y,z)

X t/3Compressed texture

Fig. 3. Packed volume texture compression (PVTC). Time-series scalar voxels in
the same location are packed into an RGB voxel. The packed RGB data is then
compressed using VTC, which generates a sequence of compressed blocks, each
containing time-series data.

Loading thread

Decoding thread

Rendering thread

Storage

CPU LZO

decoding

Data

loading

Volume

rendering

Time
step t

Time
step t+3

Double

compressed data

LZO

decoding

Data

loading

Volume

rendering

GPU

Time

X t/3

Z t/3 Z t/3 +1

Z t/3

PVTC

decoding

PVTC

decoding

X t/3

PVTC compressed data

...

...

...

Fig. 4. Decompression pipeline implemented using multiple threads running on a
multi-core CPU. The pipeline consists of three stages, each responsible for data
loading, LZO decoding, and volume rendering.

22

// Stage S1
Data loading(&ld->tstep);

Loading thread Decoding thread Rendering thread

// Stage S2
LZO decoding(&dc->tstep);

// send a signal to the decoding thread
pthread_mutex_lock(&ld->mutex);
ld->tstep += 3; // update time step
pthread_cond_signal(&ld->ready);
pthread_mutex_unlock(&ld->mutex);

// send a signal to the rendering thread
pthread_mutex_lock(&dc->mutex);
dc->tstep += 3; // update time step
pthread_cond_signal(&dc->ready);
pthread_mutex_unlock(&dc->mutex);

// receive a signal from the loading thread
pthread_mutex_lock(&ld->mutex);
while (&ld->tstep <= &dc->tstep) {
 pthread_cond_wait(&ld->ready,
 &ld->mutex);
}
pthread_mutex_unlock(&ld->mutex);

// receive a signal from the decoding thread
pthread_mutex_lock(&dc->mutex);
while (&dc->tstep <= &rd->tstep) {
 pthread_cond_wait(&dc->ready,
 &dc->mutex);
}
pthread_mutex_unlock(&dc->mutex);

// Stage S3(b) and (c)
Texture-based rendering(&rd->tstep);

// send a signal to the loading thread
pthread_mutex_lock(&rd->mutex);
rd->tstep++; // update time step
pthread_cond_signal(&rd->ready);
pthread_mutex_unlock(&rd->mutex);

// Stage S3(a)
if (rd->tstep % 3 == 0) {
 glCompressedTexImage3d(&rd->tstep);
}
glutPostRedisplay();

Id
le

 c
al

lb
ac

k
fu

nc
tio

n
D

is
pl

ay
 c

al
lb

ac
k

fu
nc

tio
n

// receive a signal from the rendering thread
pthread_mutex_lock(&rd->mutex);
while (&ld->tstep > &rd->tstep+lookahead) {
 pthread_cond_wait(&rd->ready,
 &rd->mutex);
}
pthread_mutex_unlock(&rd->mutex);

typedef struct stage_tag {
 pthread_mutex_t mutex;
 pthread_cond_t ready; // ready signal
 int tstep; // time step
} stage_t;
stage_t *ld, *dc, *rd; // each for stage S1, S2, S3
const int lookahead = 7;

Variables

Fig. 5. Pseudocode of our thread-based pipeline mechanism. See text for details.
Variable “lookahead” limits the number of stream data in the pipeline. This pipeline
is allowed to process nine time steps of the data simultaneously, because each of the
three stages can have the data containing three time steps.

23

(a)

(b)

(c)

Fig. 6. Rendering results obtained from (a) D1: small jet, (b) D2: small vortex, and
(c) D3: middle lung.

24

R
en

de
rin

g
pe

rf
or

m
an

ce
 (f

ps
)

0

20

40

60

80

100

120

D1: Small
jet

D2: Small
vortex

D3: Middle
lung

D4: Middle
jet

D5: Middle
vortex

D6: Large
lung

Raw
GPU-based (PVTC)
Hybrid (PVTC+LZO)
Pipelined hybrid

Fig. 7. Rendering performance in frames per second (fps). The performance is the
average value.

25

0

10

20

30

40

50

60

70

80

Raw GPU-based Hybrid Pipelined hybrid

T’4: Rendering
T’3: CPU-GPU transfer
T’2: LZO decompression
T’1: Data loading
T: Execution time

Ex
ec

ut
io

n
tim

e
(m

s)

(a)

0

10

20

30

40

50

60

Raw GPU-based Hybrid Pipelined hybrid

Ex
ec

ut
io

n
tim

e
(m

s)

T’4: Rendering
T’3: CPU-GPU transfer
T’2: LZO decompression
T’1: Data loading
T: Execution time

(b)

0
20
40
60
80

100
120
140
160
180

Raw GPU-based Hybrid Pipelined hybrid

Ex
ec

ut
io

n
tim

e
(m

s)

T’4: Rendering
T’3: CPU-GPU transfer
T’2: LZO decompression
T’1: Data loading
T: Execution time

(c)

0

50

100

150

200

250

300

Raw GPU-based Hybrid Pipelined hybrid

Ex
ec

ut
io

n
tim

e
(m

s)

T’4: Rendering
T’3: CPU-GPU transfer
T’2: LZO decompression
T’1: Data loading
T: Execution time

(d)

0

50

100

150

200

250

300

Raw GPU-based Hybrid Pipelined hybrid

Ex
ec

ut
io

n
tim

e
(m

s)

T’4: Rendering
T’3: CPU-GPU transfer
T’2: LZO decompression
T’1: Data loading
T: Execution time

(e)

0

200

400

600

800

1000

1200

1400

Raw GPU-based Hybrid Pipelined hybrid

Ex
ec

ut
io

n
tim

e
(m

s)

T’4: Rendering
T’3: CPU-GPU transfer
T’2: LZO decompression
T’1: Data loading
T: Execution time

(f)

Fig. 8. Breakdown analysis of execution time required for rendering of a volume.
Each of subfigures (a)–(f) corresponds to datasets D1–D6, respectively, showing the
average time spent for rendering of a single time-step data.

0 50 100 150 200 250 300 350 400 450 500

Loading thread

Decoding thread

Rendering thread

Time step t=0 t=3 t=6 t=9 t=12 t=15

Time (ms)

Fig. 9. Timeline chart showing how dataset D5 is rendered by the pipelined hybrid
method. A rectangle represents a busy state of the corresponding thread.

26

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140
t: Time step

R
en

de
rin

g
pe

rf
or

m
an

ce
 (f

ps
)

0

5

10

15

20

25

30

35

σ:
 C

om
pr

es
si

on
 ra

tio

Rendering performance
Compression ratio

(a)

0

10

20

30

40

50

60

70

0 20 40 60 80
t: Time step

R
en

de
rin

g
pe

rf
or

m
an

ce
 (f

ps
)

11.4

11.6

11.8

12

12.2

12.4

12.6

σ:
 C

om
pr

es
si

on
 ra

tio

Rendering performance

Compression ratio

(b)

Fig. 10. Compression ratio and rendering performance for (a) datasets D4 and (b)
D5 with different time steps.

33.7

47.3 46.1

36.1

45.8 47.8

0

10

20

30

40

50

60

D1: Small
 jet

D2: Small
vortex

D3: Middle
lung

D4: Middle
jet

D5: Middle
vortex

D6: Large
lung

PS
N

R
 (d

B
)

Fig. 11. Image quality of rendering results. PSNR values are averaged over all time
steps.

27

0

20

40

60

80

100

D1: Small
 jet

D2: Small
vortex

D3: Middle
lung

D4: Middle
 jet

D5: Middle
vortex

D6: Large
 lung

Error >= 5
Error = 4
Error = 3
Error = 2
Error = 1
Error = 0

R
at

io
 (%

)

Fig. 12. Breakdowns of pixel errors in rendered images. Pixel values are in the range
[0, 255].

(a) (b)

(c) (d)

Fig. 13. Comparison of rendering results using datasets D4 at time step 20 and D5
at time step 65. The left-hand side is the result from raw data while the right-hand
side is that from PVTC-compressed data.

28

(a) (b)

Fig. 14. Subtraction images for (a) datasets D4 and (b) D5, each produced from a
pair of rendering results shown in Fig. 13. Subtracted pixels are rendered on the
gray campus.

29

Table 1
Comparison of rendering systems. Compression ratio σ is given by σ = D1/D2,
where D1 and D2 represent raw size and reduced size, respectively. Note that this
table does not show a fair comparison, because compression ratio and image quality
are not measured under the same condition, such as datasets, machines, and transfer
functions.

Strategy System
Pipelined Lossless Supported Ratio Image quality

decompression compression coherence σ (dB)

Hybrid
This paper Yes

No Temporal and spatial 6–72 PSNR=33–48
[10] No

[3] No Yes Spatial 1.5–50 —

[4] No Yes Temporal and spatial 7–154 —

GPU [5] No No Temporal or spatial 3.2–3.4 PSNR=32–71

[6] No No Temporal and spatial 8–60 SNR=10–26

[7] No No Temporal 2–8 PSNR=28–49

CPU
[8] No Yes Spatial — —

[9] Yes No Temporal 7.1–34.7 SNR=5–43

Table 2
Datasets used for experiments.

Dataset
Volume size Time Raw file size per Compression ratio

(voxel) step time step (MB) PVTC PVTC+LZO

D1: small jet 129 × 129 × 104 150 1.7 11.5

D2: small vortex 128 × 128 × 128 99 2.0 6.5

D3: middle lung 256 × 256 × 148 411 9.3
6

67.0

D4: middle jet 258 × 258 × 208 150 13.2 21.5

D5: middle vortex 256 × 256 × 256 99 16.0 12.0

D6: large lung 512 × 512 × 295 411 73.8 71.7

30

