
A Resource Selection Method for Cycle Stealing in
the GPU Grid�

Yuki Kotani, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{y-kotani, ino, hagihara}@ist.osaka-u.ac.jp

Abstract. Modern programmable graphics processing units (GPUs) provide in-
creasingly higher performance, motivating us to perform general-purpose com-
putation on the GPU (GPGPU) beyond graphics applications. In this paper, we
address the problem of resource selection in the GPU grid. The GPU grid here
consists of desktop computers at home and the office, utilizing idle GPUs and
CPUs as computational engines for compute-intensive applications. Our method
tackles this challenging problem (1) by defining idle resources and (2) by de-
veloping a resource selection method based on a screensaver approach with low-
overhead sensors. The sensors detect idle GPUs by checking video random access
memory (VRAM) usage and CPU usage on each computer. Detected resources
are then selected according to a matchmaking framework and benchmark results
obtained when the screensaver is installed on the machines. The experimental
results show that our method achieves a low overhead of at most 262 ms, mini-
mizing interference to resource owners with at most 10% performance drop.

1 Introduction

Grid technology [1] has emerged as a new paradigm in computational science. It allows
us to share hardware and software resources across multiple organizations, providing
us a virtual supercomputer through the Internet. There are many types of grids such as
server grids, desktop grids, and data grids [2]. In this paper, we use the term grid to refer
to a desktop grid, namely a cycle stealing system that utilizes idle computers at home
and the office.

Another emerging paradigm is GPGPU [3], which stands for general-purpose com-
putation on the graphics processing unit (GPU) [4, 5]. The GPU is a single chip pro-
cessor designed for acceleration of compute-intensive graphics tasks, such as three-
dimensional (3-D) rendering applications. Modern GPUs are increasing in computa-
tional performance at greater than Moore’s law [6]. For example, an nVIDIA GeForce
6800 card achieves a peak performance of 120 GFLOPS for single precision data [7].
In addition to their attractive performance, GPUs are becoming more flexible in pro-
grammability with supporting branching. Consequently, many researchers are trying to
apply the GPU to non-graphics problems [8] as well as typical graphics problems.
� This work was partly supported by JSPS Grant-in-Aid for Scientific Research for Scientific

Research (B)(2)(18300009) and on Priority Areas (17032007).

In this paper, we focus on enabling GPGPU applications to execute on desktop
grids. This type of grids, named GPU grids, aims at exploiting idle GPUs as well as idle
CPUs at home and the office. Thus, we think that desktop grids will become a more
attractive computing platform if GPUs are explicitly managed and used as general-
purpose resources as well as graphics accelerators.

Since GPUs have been used as dedicated display cards, many technical problems
arise if these cards are shared between resource owners and grid users. A resource
owner here is the person who contributes resources to the grid while a grid user means
the person who desires to run grid applications on donated resources. One typical prob-
lem is resource conflicts between owners and users. In particular, the following critical
problems must be resolved to achieve our goal of building GPU grids.

P1. The lack of definition of idle resources. GPUs are originally designed to serve
their owners who directly see the display output. Therefore, the definition of idle
resources has not been considered from the grid users point of view. We must define
this to select appropriate resources for grid users. The definition here should be
considered from both the owner side and the user side in order to (1) minimize
interference to owners and (2) maximize application performance provided to users.

P2. The lack of external monitors for the GPU. Most operating systems are capable of
providing CPU performance information such as load average and memory usage.
However, current operating systems do not have information on GPU performance.
Although modern GPUs have performance counters inside their chips, these in-
ternal counters are accessible only from instrumented programs running with an
instrumented device driver [9]. Therefore, we need external monitors to minimize
modifications to resource configurations and application code.

P3. The lack of efficient multitasking on the GPU. Current GPUs do not support con-
text switching in hardware, so that preemptive multitasking of GPU applications is
not available even in Windows XP, namely the most popular system [10]. Instead,
multitasking is cooperatively done by software, which results in lower performance.
Thus, GPUs are still not virtualized enough to allow multiple applications to be run
effectively.

Although problem P3 is critical, it is not easy for non-vendors to give a direct so-
lution to this problem. Therefore, assuming that the GPU grid consists of cooperative
multitasking systems, we tackle the remaining problems P1 and P2 to select idle GPUs
appropriately from grid resources.

To address problem P1, we experimentally define the idle state of the GPU. For
problem P2, on the other hand, we develop a resource selection method based on a
screensaver approach with low-overhead sensors. The sensors detect idle GPUs accord-
ing to video random access memory (VRAM) usage and CPU usage on each computer.
Once idle GPUs are detected, they are selected according to a matchmaking framework
[11] and benchmark results. The benchmark results here are obtained when the screen-
saver is installed on each of the resources. Our method is currently implemented on
Windows systems, which support the latest GPUs for entertainment use.

Local

application

Grid user

Busy GPU

Idle GPU

Idle CPU

Grid application

Program transfer

WAN

or

LAN

Job

submission

Job request

Allocated

resources

Grid

resources

Resource

manager

DB

Resource

owners Client

Fig. 1. Overview of the GPU Grid.

2 GPU Grid

The GPU grid has almost the same structure as existing desktop grids. The only dif-
ference is that the GPU grid explicitly manages the GPU as general-purpose resources.
We think that this little difference allows us to easily integrate our resource selection
method into existing desktop grid systems.

2.1 System Overview

Figure 1 shows an overview of the GPU grid, which consists of three main components
as follows.

– Grid resources. Grid resources are desktop computers at home and the office con-
necting to the Internet. Ordinarily, these resources are used by resource owners.
However, they are donated for job execution if they are in the idle state. Arbitrary
computers are considered as grid resources regardless of having the programmable
GPU or not.

– The resource manager. The resource manager takes the responsibility for moni-
toring and selection of registered resources. It also acts as a job manager, which
receives jobs from grid users. For each job, the manager returns a list of avail-
able resources. This list contains idle resources waiting for job allocation, and thus
matchmaking [11] is done using this list (see Section 3.2). We accept arbitrary jobs
consisting of GPGPU, GPU, and CPU applications.

– Clients. Clients are front-end computers for grid users, who want to submit jobs to
the grid. Clients can also be grid resources. Once the list of available resources is
sent from the resource manager, the user program is sent to the resources for job
execution.

Thus, the GPU grid is a wider concept of the desktop grid. Therefore, a desktop grid
without GPU-equipped computers also can be regarded as the GPU grid.

In the following discussion, we use the term grid application to denote a program
submitted by grid users. We also use the term local application to denote a program
executed by resource owners using their resources.

Table 1. Classification of owner’s activities.

Situation CPU GPU Owner’s activity
S1 Idle Idle Nothing
S2 Busy Idle Web browsing, movie seeing, music listening
S3 Idle Busy (unrealistic)
S4 Busy Busy Video gaming

2.2 Definition of Idle Resources

Since a grid resource have a CPU and possibly a GPU, the resource state can be roughly
classified into four groups depending on the state of each unit. Table 1 presents this
classification with owner’s typical activities. In the following we show the definition of
idle resources using this classification.

As we mentioned before, the definition must satisfy the following requirements.

R1. It minimizes interference to resource owners.
R2. It maximizes application performance provided to grid users.

To satisfy the above requirements, we define an idle resource such that it satisfies all of
the following three conditions.

D1. The resource owner does not interactively operate the resource.
D2. The GPU does not execute any local application.
D3. The CPU is idle enough to provide the full performance of the GPU to grid users.

Firstly, condition D2 is essential to satisfy requirement R1, because the GPU does
not support preemptive multitasking. Otherwise, some uncooperative applications will
significantly drop the frame rate of the display, making resource owners nervous. Con-
sequently, resource owners are interfered by grid applications if condition D2 is not
satisfied. Thus, R1 excludes situations S3 and S4 from the idle state (See Table 1).

Secondly, due to the same reason, R1 also excludes situation S2 if the resource
owner interactively operates their computer through the display output. We also have
experimentally confirmed that the grid application suffers from lower performance if
the resource owner gives a window focus to the operating window (see Section 4.1).
Therefore, situation S2 does not satisfy requirement R2. Thus, condition D1 is needed.

Finally, condition D3 is essential to satisfy requirement R2. We have experimentally
confirmed this (see Section 4.1). GPU applications generally make the CPU usage go
to 100%, because they usually require CPU intervention during GPU execution. Note
here that this condition might be eliminated in the future, because Windows Graphics
Foundation (WGF) 2.0 will enable GPU processing without CPU intervention [12].

3 Resource Selection Method

In this section, we describe how idle resources are detected and how resources are
selected from detected resources.

Run the screensaver as a background job

C1?

C2?

C3?

Job request, receipt, and execution

with automated resume from

the screensaver

Yes

Yes

Yes

No

No

No

C1: The screensaver is activated

C2: VRAM usage =< frame buffer size

C3: CPU usage < 10%

Install the screensaver

Measure the frame buffer size

Run the benchmarking program

Fig. 2. Resource detection procedure. Steps in the left-hand side are processed only once when
the screensaver is installed on the resource.

3.1 Detection of Idle Resources

Figure 2 shows the procedure of resource detection. To detect an idle resource that
satisfies conditions D1–D3, our method checks the resource in the following steps.

C1. The screensaver is activated.
C2. VRAM usage ≤ frame buffer size.
C3. CPU usage < 10%.

Steps C1, C2, and C3 here aim at checking conditions D1, D2, and D3, respectively.
The first condition D1 is checked by a screensaver approach. The screensaver is

currently activated after five minutes of owner’s inactivity. This screensaver approach
allows us to detect inactivity at a lower overhead. It also allows owners to rapidly re-
sume their activity, as compared with polling-based methods [13].

Due to the lack of preemptive multitasking supports, our screensaver avoids updat-
ing the display output. Instead, the display is drawn only when the screensaver is turned
on. This intends to avoid increasing the workload of the CPU and the GPU during the
screensaver mode, delivering full GPU performance to grid users. The screensaver is
implemented using a library scrnsave.lib, which is distributed as a part of Microsoft
Visual Studio.

The remaining conditions D2 and D3 are checked by a sensor program. This pro-
gram is implemented as a screensaver function ScreenSaverProc(), which is called when
the screensaver is activated. Thus, we minimize the monitoring overhead by minimizing
the invocation of the sensor program.

The key idea to evaluate condition D2 is the VRAM usage check. This idea assumes
that the GPU always consumes VRAM for the frame buffer and further VRAM if it
executes any GPU programs. Under this assumption, we can evaluate condition D2
by comparing the current usage and the default usage, namely the frame buffer size.
The default usage here is measured only once when installing the screensaver on the
resource. Our VRAM-based monitoring method has two advantages as follows.

– No modification. The VRAM usage can be easily investigated using a Direct Draw
function GetCaps(), which is initially available in Windows computers. Thus, we
do not need any special libraries and hardware at grid resources.

– Lower overhead. The function GetCaps() obtains the VRAM usage from the device
driver. Therefore, this information is obtained without GPU intervention, leading to
a low-overhead sensor.

Note here that GetCaps() does not directly give the VRAM usage. This function returns
the capacity and the amount of free space, so we subtract them to estimate the usage.

The assumption mentioned above is valid in the current GPU, which allocates VRAM
in advance of an execution. Furthermore, the GPU always consumes VRAM for the
frame buffer size to refresh the display. Although the amount of this consumption might
be computed according to the screen resolution and its color depth, we have found that
it varies depending on hardware and software environments, such as the device driver
version. Therefore, we directly measure the default usage at screensaver installation.

Finally, condition D3 can be evaluated by accessing performance information pro-
vided by operating systems. According to preliminary experiments (see Section 4.1),
we currently use the CPU usage with a threshold of 10%. As well as the VRAM usage,
this information does not require GPU intervention. Our implementation calls PdhCol-
lectQueryData() to access a performance counter in the Windows operating system.

3.2 Selection of Idle Resources

Once idle resources are detected by the screensaver approach, the next issue is the re-
source selection problem. We resolve this issue by combining two different approaches:
a benchmarking approach [14] and a matchmaking approach [11].

The benchmarking approach [14] takes the responsibility for measuring the actual
performance for GPGPU applications. The reason why we perform benchmarking is
due to the fact that the specification of the GPU does not always represent the actual
performance for GPGPU applications. Actually, we have found that a high-end card
is outperformed by a commodity card and that the device driver version significantly
affects the performance. Therefore, we run a benchmark program at screensaver instal-
lation to obtain the actual performance under the idle state. These benchmark results
are then collected at the resource manager to give priorities to detected resources.

On the other hand, the matchmaking approach [11] is responsible for providing a
flexible and general framework of resource selection. For example, this framework al-
lows grid users to select only nVIDIA GeForce 7800 cards or select only GPUs with
having a fill rate of at least 3 Gpixels/s, according to the benchmark results. We think
that this flexible framework is essential to run GPGPU applications in grid environ-
ments, because the GPU is still not a matured computing environment. We have expe-
rienced that some applications running on a GPU do not successfully run on different
GPUs, due to architectural differences and driver version differences. Therefore, we
think that the framework should allow users to select appropriate resources.

Table 2. Specification of experimental machines.

PC1 PC2 PC3

CPU
Pentium 4 Pentium 4 Pentium 4
3.4 GHz 3.0 GHz 2.8 GHz
nVIDIA nVIDIA nVIDIA

GPU GeForce GeForce Quadro FX
7800 GTX 6800 GTO 3400

Core speed (MHz) 430 350 350
Memory speed (MHz) 1200 900 900
Memory bandwidth (GB/s) 38.4 28.8 28.8
Fill rate (Gpixels/s) 6.88 4.2 5.6
Pipeline engines 24 12 16
Graphics bus PCI Express
Driver version 79.70 78.01 66.93

4 Experimental Results

Table 2 shows the specification of experimental machines. We use three machines PC1,
PC2, and PC3, each with different CPUs and GPUs. PC1 and PC3 provide the highest
and the lowest performance, respectively.

For experiments, we use three GPGPU applications: LU decomposition [15], con-
jugate gradients (CG) [16], and 2-D/3-D rigid registration (RR) [17]. Due to the space
limitation, we briefly summarize each characteristic.

– LU decomposition of a 2048×2048 matrix. In this implementation [15], the matrix
data is stored as textures in the VRAM. Textures are then repeatedly rendered by
the hardware components in the GPU, such as SIMD and vector processing units.
The CPU takes the responsibility for computing the working area in textures where
the GPU operates.

– CG for solving linear systems with a coefficient matrix of size 64 × 64. Similar
to LU decomposition, this implementation also repeats rendering against textures.
From the viewpoint of the workload characteristic, it has less CPU workload than
LU decomposition because the GPU is responsible for computing the working area.

– RR for alignment between 2-D images and a 3-D volume. This implementation
[17] has the lowest workload of the CPU among the three applications. In contrast,
computation at the GPU side is the heaviest because it operates a volume data in
addition to 2-D images.

4.1 Evaluating Definition of Idle Resources

To verify the definition of idle resources, we compare the performance of local and grid
applications between idle resources and busy resources. The performance is presented
by application throughput given by the number of executions per second.

According to the definition presented in Section 2.2, we measure the throughput on
busy resources. Busy states here are given by negations of each of conditions D1, D2,
and D3 as follows.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100

PC1

PC2

PC3

T
h

ro
u

g
h

p
u

t
(f

p
s)

CPU usage (%)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

PC1

PC2

PC3

T
h
ro

u
g
h
p
u
t

(f
p
s)

CPU usage (%)

(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

PC1

PC2

PC3

T
h

ro
u

g
h

p
u

t
(f

p
s)

CPU usage (%)

(c)

Fig. 3. Measured throughput with different CPU usages for three different GPGPU applications:
(a) LU decomposition, (b) conjugate gradients (CG), and (c) rigid registration (RR). These appli-
cations are executed as grid applications. Throughput is presented in frames per second (fps).

D1: The resource owner interactively operates the resource. We measure the through-
put of local and grid applications while executing the PCMark05 benchmark [18].
PCMark05 here renders various web pages, and thus this experiment measures in-
terference to owners assuming that they are browsing web pages during grid job
execution.

D2: The GPU executes local applications. We measure the throughput of local ap-
plications while executing a grid application. We use LU, CG, or RR application
for each side. This experiment also intends to measure the interference to GPU
applications instead of CPU applications (web browsing as mentioned above).

D3: The CPU is not idle enough to provide the full performance of the GPU to grid
users. We measure the throughput of grid applications with different CPU usages,
ranging from 0% to 100%.

To obtain accurate throughputs, both local and grid applications are executed in an
infinite loop during measurement.

Figure 3 gives the results for condition D3. It shows the throughput of grid appli-
cations with different CPU usages. For all applications, we can see that the throughput
decreases as the CPU usage increases. One remarkable point here is that LU linearly
drops the performance while RR slowly decreases the performance. This is due to the
difference of workload characteristics inherent in applications. As compared with CG
and RR, LU frequently switches textures, and thus requires more CPU interventions
during execution. It also requires more data transfer between the CPU and the GPU.
Therefore, LU sharply drops the performance as compared with CG and RR. Accord-
ing to these results, we have determined that idle resources must have a CPU usage of
at most 10%.

Figure 4 shows the results for conditions D1 and D2. It shows the throughput of
grid applications with different activities: web browsing (PCMark05), LU, CG, and RR
execution. LU and CG in Figs 4(a) and 4(b) indicate that grid applications significantly
drop their performance if owners are seeing web pages. In contrast, the performance
drop in RR is not so serious. We think that this is due to CPU interventions required

0

0.1

0.2

0.3

0.4

0.5

Idle Web LU CG RR

PC1

PC2

PC3

T
h
ro

u
g
h
p
u
t

(f
p
s)

Owner's activity

(a)
T

h
ro

u
g
h
p
u
t

(f
p
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Idle Web LU CG RR

PC1

PC2

PC3

Owner's activity

(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Idle Web LU CG RR

PC1

PC2

PC3

Owner's activity

T
h
ro

u
g
h
p
u
t

(f
p
s)

(c)

Fig. 4. Measured throughput with different owner’s activities for three GPGPU applications: (a)
LU decomposition, (b) conjugate gradients (CG), and (c) rigid registration (RR). Applications in
the horizontal axis are local applications.

during GPU execution. As we mentioned earlier, LU and CG require more interventions
than RR. We also think that the window focus is critical in these cases. Since the focus is
given to owner’s operating window, PCMark05 in this case, the operating system gives
a lower priority to the background job, namely the grid application. This increases the
overhead of CPU interventions, making the GPU in the idle state. Thus, resources in
condition D1 should not be used for job execution. We also confirmed this from the
owner side. The rendering performance of web pages is decreased from approximately
2 to 0.5 pages/s.

Finally, we investigate condition D2. In Fig. 4, we can see that the throughput of
grid applications also significantly decreases if the owner executes a GPU application.
In particular, RR seems to be an uncooperative application, because it significantly de-
creases the performance of LU and CG, as shown in Figs 4(a) and (b), respectively.
Furthermore, if RR is executed as a grid application, it provides almost the same per-
formance, whether it is executed on an idle resource or a busy resource. Thus, since both
the grid users and resource owners can execute uncooperative applications on resources,
we think that condition D2 is needed to define idle resources.

In summary, we think that the definition is reasonable with minimizing interference
to resource owners while maximizing application performance provided to grid users.

4.2 Evaluating Overhead of Resource Selection

We now evaluate our resource selection method in terms of the monitoring overhead.
We also investigate how local applications are interfered by the method. In experiments,
we use LU, CG, and RR as local applications.

Table 3 shows the execution time of local applications, explaining how local ap-
plications are perturbated by the resource monitoring overhead. We first measured the
original time T1 with disabling resource monitoring, and then time T2 with enabling

Table 3. Perturbation effects measured using three local applications. T1 and T2 represent the
execution time without resource monitoring and that with monitoring, respectively. T2 − T1 rep-
resents the perturbation time increased by monitoring. σ denotes the perturbation ratio, where
σ = (T2 − T1)/T1 ∗ 100. Times are presented in seconds.

Local PC1 (s) PC2 (s) PC3 (s)
application T1 T2 T2 − T1 (σ) T1 T2 T2 − T1 (σ) T1 T2 T2 − T1 (σ)
LU 2.4 2.5 0.1 (4%) 5.6 5.7 0.1 (2%) 21.1 21.2 0.1 (1%)
CG 1.7 1.8 0.1 (6%) 1.9 2.1 0.2 (10%) 2.5 2.6 0.1 (4%)
RR 14.2 14.5 0.3 (2%) 18.6 18.8 0.2 (1%) 20.7 21.0 0.3 (1%)

monitoring. Therefore, the perturbation time T2 − T1 explains how applications are
perturbated by monitoring.

We observe the highest perturbation time T2 −T1 of 300 ms when executing RR on
computer PC1. The perturbation ratio σ also indicates that this time is short enough as
compared with the original execution time T1. Furthermore, our monitoring program is
implemented as a CPU program, and thus it avoids making GPU programs slow down.

The perturbation time T2 − T1 of 300 ms is due to the monitoring overhead of
262 ms: 190 ms for activating the screensaver; 2 ms for checking the VRAM usage;
and 70 ms for the CPU usage. Although the screensaver activation takes 190 ms at
the GPU side, it does not cause critical interference to the resource owner, because the
activation guarantee the owner’s inactivity. One concern is the interference to GPGPU
applications that do not require interaction between owners. However, this is not so
critical because our screensaver avoids refreshing the display. The remaining time for
checking the VRAM and CPU usages is also a low overhead, because it requires only
references to performance information, which is processed at the CPU side. Thus, we
think that our method achieves a low overhead monitoring with minimum interference.

5 Related Work

To the best of our knowledge, there is no work on utilizing the GPU as a general-
purpose resource in the grid. However, some grid projects use the GPU as a graphics
accelerator to achieve large-scale visualization in server grid environments [19, 20], in
which resources are dedicated to grid users. Due to this dedication, server grids do not
have resource conflicts between resource owners and grid users. Therefore, resources
can be easily managed by a job management server that receives jobs from grid users.
A similar work is presented by Fan et al. [21] who build a cluster of GPUs for fluid
simulation and visualization.

There are many projects related to desktop grids. Condor [13] is an earlier sys-
tem that explores using idle time in networked workstations. This system has a central
server that polls every two minutes for available CPUs and jobs waiting. Each worksta-
tion has a local scheduler that checks every 30 seconds to see if the running job should
be preempted because the owner has resumed using the workstation. Thus, owners are
interfered for 30 seconds at the worst case. This interfering time is too long for cooper-
ative multitasking systems, which can significantly drop the frame rate of the display.

BOINC [22] is a middleware system of the SETI@home project [23], which demon-
strates the practical use of desktop grids. This system has a screensaver mode that shows
the graphics of running applications. Although this mode is useful to know that resource
owners currently do not operate their computers, it is not sufficient to decide if the GPU
is not being used. Thus, some additional monitors are needed for the GPU.

NVPerfKit [9] is a monitoring tool that allows us to probe performance counters in
the GPU. This tool gives us important performance information such as the ratio of the
idle time to the total measured time. However, it requires modern nVIDIA GPUs with an
instrumented version of the device driver to probe the counters. Therefore, this vendor-
specific tool is not a realistic solution to our problem, where various GPUs should be
monitored without system or code modifications.

Benchmarking tools provide us effective performance information based on direct
execution of some small code. For example, 3DMark06 [18] measures GPU perfor-
mance using a set of 3-D graphics applications. On the other hand, gpubench [14] aims
at capturing GPU performance for GPGPU applications. Thus, benchmarking tools
might be useful to detect idle GPUs. However, they require a couple of time to fin-
ish benchmarking. This high overhead is critical if they are executed every time the
resource is checked for availability.

With respect to multitasking of GPU applications, Windows Vista will support pre-
emptive multitasking [10]. As compared with cooperative multitasking, preemptive
multitasking provides more stable, reliable performance when multiple applications are
executed simultaneously. Therefore, our assumption of cooperative multitasking might
lead to a strict definition of the idle GPU in the future. However, we think that this
assumption is compatible with future systems, because we only have to relax the defi-
nition to gather more resources for such preemptive multitasking systems.

6 Conclusion

We have presented a resource selection method for the GPU grid, which aims at ex-
ecuting GPGPU applications on a desktop grid. We also have shown a definition of
idle resources in the GPU grid. Both the method and definition works on cooperative
(non-preemptive) multitasking systems. The method employs a screensaver-based ap-
proach with low-overhead monitors. The monitors are designed to detect idle GPUs
with minimum program invocations.

The experimental results show that the definition is reasonable with minimizing
interference to resource owners while maximizing application performance provided to
grid users. We also find that the method achieves a low overhead of at most 262 ms,
which is short enough as compared to the execution time of local applications.

References

1. Foster, I., Kesselman, C., eds.: The Grid: Blueprint of a New Computing Infrastructure.
Morgan Kaufmann, San Mateo, CA (1998)

2. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: architecture and performance of an
enterprise desktop grid system. J. Parallel and Distributed Computing 63(5) (2003) 597–610

3. GPGPU: General-Purpose Computation Using Graphics Hardware (2005) http://www.
gpgpu.org/.

4. Fernando, R., ed.: GPU Gems: Programming Techniques, Tips and Tricks for Real-Time
Graphics. Addison-Wesley, Reading, MA (2004)

5. Pharr, M., Fernando, R., eds.: GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addison-Wesley, Reading, MA (2005)

6. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)
114–117

7. Montrym, J., Moreton, H.: The GeForce 6800. IEEE Micro 25(2) (2005) 41–51
8. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell,

T.J.: A survey of general-purpose computation on graphics hardware. In: EUROGRAPHICS
2005, State of the Art Report. (2005) 21–51

9. nVIDIA Corporation: NVPerfKit 2 User Guide (2006) http://developer.nvidia.
com/NVPerfKit/.

10. Pronovost, S., Moreton, H., Kelley, T.: Windows display driver model (WDDM) v2 and
beyond. In: Windows Hardware Engineering Conf. (WinHEC’06). (2006) http://www.
microsoft.com/whdc/winhec/trackdetail06.mspx?track=11.

11. Raman, R., Livny, M., Solomon, M.: Resource management through multilateral matchmak-
ing. In: Proc. 9th IEEE Int’l Symp. High Performance Distributed Computing (HPDC’00).
(2000) 290–291

12. Blythe, D.: Windows graphics overview. In: Windows Hardware Engineering Conf. (Win-
HEC’05). (2005) http://www.microsoft.com/whdc/winhec/Pres05.mspx.

13. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor - a hunter of idle workstations. In: Proc.
8th Int’l Conf. Distributed Computing Systems (ICDCS’88). (1988) 104–111

14. Buck, I., Fatahalian, K., Hanrahan, P.: GPUBench: Evaluating GPU performance for numer-
ical and scientific application. In: Proc. 1st ACM Workshop General-Purpose Computing on
Graphics Processors (GP2’04). (2004) C-20

15. Ino, F., Matsui, M., Hagihara, K.: Performance study of LU decomposition on the pro-
grammable GPU. In: Proc. 12th IEEE Int’l Conf. High Performance Computing (HiPC’05).
(2005) 83–94

16. Corrigan, A.: Implementation of conjugate gradients (CG) on programmable graphics hard-
ware (GPU) (2005) http://www.cs.stevens.edu/˜quynh/student-work/
acorrigan_gpu.htm.

17. Ino, F., Gomita, J., Kawasaki, Y., Hagihara, K.: A GPGPU approach for accelerating 2-D/3-
D rigid registration of medical images. (In: Proc. 4th Int’l Symp. Parallel and Distributed
Processing and Applications (ISPA’06). (2006)

18. Futuremark Corporation: Products (2006) http://www.futuremark.com/
products/3dmark06/.

19. Jankun-Kelly, T., Kreylos, O., Ma, K.L., Hamann, B., Joy, K.I., Shalf, J., Bethel, E.W.: De-
ploying web-based visual exploration tools on the grid. IEEE Computer Graphics and Ap-
plications 23(2) (2003) 40–50

20. Grimstead, I.J., Avis, N.J., Walker, D.W.: Automatic distribution of rendering workloads in
a grid enabled collaborative visualization environment. In: Proc. SC’04. (2004) 10 pages
(CD-ROM).

21. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance com-
puting. In: Proc. SC’04. (2004) 12 pages (CD-ROM).

22. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In: Proc. 5th
IEEE/ACM Int’l Conf. Grid Computing (GRID’04). (2004) 4–10

23. Sullivan, W.T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, D., Anderson, D.: A new major
SETI project based on project serendip data and 100,000 personal computers. In: Proc. 5th
Int’l Conf. Bioastronomy. (1997) 729

