
A GPGPU Approach for Accelerating
2-D/3-D Rigid Registration of Medical Images

Fumihiko Ino1, Jun Gomita2, Yasuhiro Kawasaki1, and Kenichi Hagihara1

1 Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

ino@ist.osaka-u.ac.jp
2 Graduate School of Information Science and Technology, The University of Tokyo

Abstract. This paper presents a fast 2-D/3-D rigid registration method using a
GPGPU approach, which stands for general-purpose computation on the graph-
ics processing unit (GPU). Our method is based on an intensity-based registra-
tion algorithm using biplane images. To accelerate this algorithm, we execute
three key procedures of 2-D/3-D registration on the GPU: digitally reconstructed
radiograph (DRR) generation, gradient image generation, and normalized cross
correlation (NCC) computation. We investigate the usability of our method in
terms of registration time and robustness. The experimental results show that our
GPU-based method successfully completes a registration task in about 10 sec-
onds, demonstrating shorter registration time than a previous method based on a
cluster computing approach.

Keywords. GPGPU, image registration, performance evaluation.

1 Introduction

Image registration technique [1, 2] plays an increasingly important role in computer-
aided surgery. For example, as illustrated in Fig. 1, 2-D/3-D registration technique al-
lows us to align a preoperative 3-D CT volume with an intraoperative 2-D fluoroscopy
image, giving us point correspondences between the coordinates in the virtual world
and those in the real world. These precise correspondences are necessary to exactly
perform a preoperative plan in the real world, which is carefully developed using the
preoperative volume in advance of surgery. However, naive CPU implementations take
several minutes to complete a registration task due to a large amount of computation.
Therefore, some acceleration techniques are required to use this technique for surgical
assistances, where response time is strictly limited in a short time.

One emerging computational platform is the graphics processing unit (GPU), namely
commodity graphics hardware, which is rapidly increasing performance beyond Moore’s
law [3]. For example, nVIDIA’s GeForce 6800 provides approximately 120 GFLOPS at
peak performance, which equals to six 5-GHz Pentium 4 processors [4]. Furthermore,
recent GPUs provide programmability to users, making themselves a more flexible plat-
form as compared with earlier non-programmable GPUs, which deal only with render-
ing tasks of 3-D objects. Therefore, many researchers are trying to apply the GPU to a

ID: Digitally reconstructed

 radiograph (DRR)

Rendering

source

Rendering

source

z

x

y

z

x

y

V: Preoperative

 CT volume

Virtual

world

Real

world

X-ray

source IF: Intraoperative X-ray image

Position of real

patient can be

estimated when

DRR matches

X-ray image

T: Transformation

Fig. 1. Overview of 2-D/3-D registration.

variety of problems such as a fluid dynamics simulator [5], numerical application [6],
data clustering application [7], and so on.

The objective of our work is to achieve fast 2-D/3-D registration by means of a
general-purpose computation on the GPU (GPGPU) approach [8]. We implement the
key procedures of a registration algorithm [9] on the GPU: 1) digitally reconstructed
radiograph (DRR) generation; 2) gradient image generation; and 3) normalized cross
correlation (NCC) computation. The main contribution of our work is the GPU imple-
mentation for procedures 2) and 3) based on that for procedure 1) [10]. We compare
our GPU-based method with a cluster-based method [9] in terms of performance and
robustness. Our method differs from prior methods [10, 11], which employ different
strategies to implement a part of the three procedures on the GPU.

The rest of the paper is organized as follows. We begin in Section 2 by introducing
the 2-D/3-D registration algorithm, and then show an overview of GPU architecture in
Section 3. We then present our GPU-based method in Section 4. Section 5 shows some
experimental results. Finally, Section 6 concludes the paper.

2 2-D/3-D Registration Algorithm

The problem of 2-D/3-D registration is to compute the rigid transformation parameter
T that relates the coordinate system of a 3-D volume V and that of a 2-D image IF

(usually, a fluoroscopy image).
We first describe a single-image version of the registration algorithm for easier un-

derstanding of the biplane-image version [12]. Our method is based on an intensity-
based algorithm [1, 13], which resolves the registration problem into an optimization
problem. The algorithm optimizes a cost function C associated with transformation pa-
rameter T, where T represents the translation and rotation of V . The cost function C

here represents the similarity between an image IF and a DRR ID produced by projec-
tion of V . The optimization is done by the steepest descent optimization technique [14]
in a coarse-to-fine manner.

According to an empirical study [13], we currently use gradient correlation (GC)
for the cost function C. Given two 2-D images, A and B, GC G(A, B) between them
is given by:

G(A, B) =
1
2

[
N

(
∂A

∂x
,
∂B

∂x

)
+ N

(
∂A

∂y
,
∂B

∂y

)]
(1)

where N represents NCC between two images, ∂A/∂x and ∂A/∂y (∂B/∂x and ∂B/∂y)
are the horizontal and the vertical gradient images of A (B, respectively). NCC N(A, B)
between n × n pixel images A and B is given by:

N(A, B) =
SAB − SASB/n2√

SA2 − (SA)2/n2
√

SB2 − (SB)2/n2
, (2)

where SA and SA2 (SB and SB2) represent the sum and the squared sum of A (B),
respectively, and SAB represents the multiplied sum of A and B.

The gradient images are produced by the first derivative of a Gaussian. This filter
enhances the outline of objects with reducing and smoothing noise in images. There-
fore, it contributes to improve the robustness of registration. Given an image A, the
horizontal gradient image ∂A/∂x and the vertical gradient image ∂A/∂y are given by:

∂A

∂x
(x, y) =

∑
−R≤i,j≤R

−i

2πσ4
e−

i2+j2

2σ2 A(x + i, y + j), (3)

∂A

∂y
(x, y) =

∑
−R≤i,j≤R

−j

2πσ4
e−

i2+j2

2σ2 A(x + i, y + j), (4)

where σ and R represent the standard deviation and the kernel size of the filter, respec-
tively. We currently use σ = 3 and R = 9.

In summary, the single-image algorithm optimizes the cost function G(IF , ID) with
respect to the transformation T. On the other hand, our biplane-image version optimizes
the sum of two cost functions, each computed for one of the biplane images. The three
procedures, namely 1) DRR generation, 2) gradient image generation, and 3) NCC com-
putation, are repeated until finding a local optimum.

3 GPGPU: GPU as a Computational Engine

The original purpose of the GPU is to project 3-D polygonal objects on the 2-D screen.
To accelerate this rendering task, the GPU employs a parallel architecture [4] that con-
sists of two different programmable processors: vertex processors (VPs) and fragment
processors (FPs), as shown in Fig. 2. Since FPs in modern GPUs provide much higher
performance than VPs, most GPGPU implementations use FPs as a computational en-
gine in the GPU [15].

Such implementations employ the stream programming model [16], which exploits
the data parallelism inherent in the application by organizing data into streams and

CPU

GPU

PCI Express or AGP

up: 4GB/s or 266MB/s

down: 4GB/s or 2GB/s

Main memory
(max. 4GB)

VRAM
(max. 512MB)

DDR2

8.4GB/s

DDR3

54.4GB/s

Vertex Processors

Fragment Processors

Rasterizer

Vertex

Program

Fragment

Program

Texture

data

Fig. 2. GPU architecture.

expressing computation as kernels that operate on streams. Streams here are usually
stored as texture data on the video memory, which can be fetched to FPs. A kernel is
implemented as a FP program. The computed results can be transferred (readback) from
the video memory to the main memory by using graphics APIs such as OpenGL [17].

In addition to the parallelization mentioned above, vectorization is also necessary to
maximize the performance on the GPU. FPs support 4-length vector operations because
they are designed to deal with pixels, which are four-component RGBA data represent-
ing red, green, blue colors and opacity. Since FPs apply vertor operations to a pixel, we
must adapt data structure to obtain 400% speedup.

One concern about the GPGPU approach is that the GPU seems not be rigorous
with computational errors [18], though it supports the IEEE floating-point representa-
tions [19]. Therefore, we should check computational results to verify if the error is
acceptable.

4 2-D/3-D Registration on the GPU

Fig. 3 shows an overview of our GPU-based method. The key points of our design are
as follows:

– (P1) Performance bottlenecks on the CPU should be implemented on the GPU with
an algorithm suitable to the GPU architecture;

– (P2) The amount and frequency of communication between the CPU and the GPU
should be minimized to achieve full acceleration on the GPU.

We think that the suitable algorithm mentioned above is an algorithm that (P1-a) re-
solves the target problem into a rendering problem, which is naturally accelerated by
the GPU, or (P1-b) has fully data parallelism so that FPs can simultaneously process
different pixels on the image (namely, texture), and if possible, with vector operations.

According to point (P1), we have decided to implement the three procedures on
the GPU: DRR generation; gradient image generation; and NCC computation. These
procedures take 99% of execution time on a sequential implementation.

1) DRR generation. As LaRose has presented in [10], this procedure can be nat-
urally implemented on the GPU, because the principle of X-ray propagation is similar
to that of object projection required for volume rendering. Therefore, we use a texture-
based volume rendering method [20] for DRR generation in order to maximize the

GPU SideCPU Side

CT volume 2-D image

DRR

Gradient

DRR

Gradient

image

Input data

1) DRR generation

2) Gradient image generation

Parallel reduction

NCC

3) NCC computation

(P2) Minimum data transfer

between CPU and GPU

(P1) Acceleration on the

GPU with an appropriate

parallel algorithm

Tansformation T

Reduced values:

SA, SA2, SB, SB2, SAB

T

Update T

for further

optimization

Step 1Step 2

Fig. 3. Overview of 2-D/3-D registration on the GPU.

efficiency on the GPU. This method can be efficiently implemented on the GPU, be-
cause the texture-mapping and the alpha-blending procedures are hardware-accelerated
on the GPU. Thus, our implementation for DRR generation satisfies point (P1-a).

Our method differs from LaRose’s method in using 3-D textures instead of 2-D
textures. As compared with 3-D textures, 2-D textures cannot produce higher quality
DRRs, because 2-D textures cannot always be perpendicular to the view direction.

2) Gradient image generation. We implement a two-pass 1-D filter to reduce the
time complexity of the 2-D filter:

Px1(x, y) =
∑

j

e−j2/2σ2
p(x, y + j) (5)

Px2(x, y) =
∑

i

−i

2πσ4
e−i2/2σ2

p(x + i, y) (6)

Py1(x, y) =
∑

j

−j

2πσ4
e−j2/2σ2

p(x, y + j) (7)

Py2(x, y) =
∑

i

e−i2/2σ2
p(x + i, y) (8)

This filter has fully data-parallelism, so that FPs in the GPU are allowed to simultane-
ously process different pixels in the image. Furthermore, vectorization can be applied
to Eqs. (5) and (7) (Eqs. (6) and (8), also), because these computations (1) have no
data dependence between them and (2) require pixels on the same location p(x, y + j).

Therefore, the horizontal gradient image and the vertical gradient image can be pro-
duced simultaneously by vectorization. To enable this, we use two of four (RGBA)
components to process the 1-D filters at the same time. Our vectorization can be repre-
sented as follows:

Pxy1(x, y) =
∑

j

⎡
⎣
⎛
⎝ e−j2/2σ2

− j

2πσ4
e−j2/2σ2

⎞
⎠ ∗ p(x, y + j)

⎤
⎦ (9)

Pxy2(x, y) =
∑

i

⎡
⎣
⎛
⎝ − i

2πσ4
e−i2/2σ2

e−i2/2σ2

⎞
⎠ ∗ p(x + i, y)

⎤
⎦ (10)

where Pxy1 and Pxy2 represent two-component data containing pixels of gradient im-
ages after applying the first-pass filter and the second-pass filter, respectively, and p
represent a vectorized pixel. Thus, our implementation for gradient image generation
satisfies point (P1-b).

NCC computation. Finally, Eq. (2) indicates that there is no data-parallelism in
NCC computation, because pixel values are merged into a single value (NCC). There-
fore, a naive method may process this procedure on the CPU. However, this is not
recommended from the viewpoint of (P2). That is, if the CPU takes the responsibility
for NCC computation, we have to transfer the DRR from the GPU to the CPU at every
optimization step. This communication may result in a lower performance, because the
DRR is 2-D data. To tackle this problem, we decompose the computation into two parts:
reduction operations on the GPU and the remaining operations on the CPU. This allows
us to transfer only five floating point numbers, SA, SA2 , SB , SB2 , and SAB , instead
of the 2-D DRR. Then, the CPU computes NCC using these numbers according to Eq.
(2). Thus, although parallelization cannot be applied to the entire computation, we can
parallelize reduction operations with reducing the amount of communication between
the CPU and the GPU.

Given an image of n × n pixels, the parallel reduction can be done in at most log n
steps, as shown in Fig. 3. Although this sequence of steps must be serially processed,
each step can be parallelized according to point (P1-b). In our current implementation,
we have empirically determined that each of FPs merges nine pixels into a single pixel
at a step. Furthermore, we apply vectorization to reduction operations. That is, four of
the five sums are computed at the same time.

Note here that Chisu also have presented parallel reduction in [11]. However, this
method may suffer in computational (round-off) error, because it uses mipmap textures
to compute averages of pixels at each step. Since this error increases with the number
of steps, the amount of communication cannot be reduced into optimal five numbers
in most cases. Thus, their method has a tradeoff relation between the communication
amount and the computational error. In contrast, our method computes sums of pixels,
preventing computational error. Therefore, the DRR is fully reduced at the GPU side
without any errors.

According to the designs mentioned above, we have implemented the method us-
ing the C++ language, the OpenGL library [17], and the Cg (C for graphics) toolkit
[21]. Fig. 4 and Fig. 5 show an overview of the CPU and GPU programs implemented

void runReduction(Region ®ion, // Region for drawing
TextureObject *rtexture, // Initialized texture object
RenderTexturePBuffer *pbuffer, // Initialized pixel buffer
BufferSpecifier &rtextureBuffer, // Input buffer, namely gradient images
BufferSpecifier &drawBuffer) // Output buffer

{
cgGLEnableProfile(vertexProfile and fragmentProfile);
cgGLBindProgram(vertexProgram and fragmentProgram); // See Fig. 5
glDrawBuffer(drawBuffer); // Specify output buffer
rtexture->bindTexture(); // Bind texture
pbuffer->bindTexImage(rtextureBuffer); // Bind input buffer
glClear(GL COLOR BUFFER BIT); // Clear output buffer
glRecti(region); // Draw specified region
glFlush(); // Flush issued OpenGL commands
pbuffer->releaseTexImage(rtextureBuffer);
cgGLDisableProfile(vertexProfile and fragmentProfile);

}

Fig. 4. CPU program for parallel reduction.

for the parallel reduction procedure. Basically, the remaining procedures also can be
implemented in the same way.

In this example program, 3 × 3 neighbor pixels are merged into a single pixel.
Before performing rendering operations, the CPU program in Fig. 4 binds a vertex pro-
gram and a fragment program, which express how a pixel should be computed through
the rendering pipeline. For example, the vertex program in Fig. 5(a) computes the coor-
dinates of neighbors in order to pass them to FPs. Then, the fragment program in Fig.
5(b) receives the coordinates from VPs and fetches the corresponding pixels to reduce
them into a pixel. These rendering operations are activated by glRecti() in the CPU
program and are terminated by glFlush(). After this, glReadPixels() is called to transfer
computation results from the video memory to the main memory.

5 Experimental Results

To evaluate the usability of our GPU-based method, we compare it with a cluster-based
method [9] in terms of the registration time and the target registration error (TRE) [23].
The GPUs employed for experiments are summarized in Table 1. On the other hand, the
cluster consists of 32 PCs each with a Pentium 3 1-GHz CPU. PCs are interconnected
by a Myrinet 2000 switch [24], which yields a bandwidth of 2 Gb/s. Note here that the
cluster-based method employ a ray casting method for DRR generation. Therefore, the
base algorithm is slightly different from our GPU-based method.

Registration is performed using two datasets: the real spine and the femur phan-
tom (see Fig. 6). Because our experiments focus on the comparison of implementation
methods, we use DRRs instead of fluoroscopy images. That is, we first generate a DRR
from a viewing point, and then use the DRR as an input image IF to estimate the point
from a randomly selected point.

// Data structure for passing coordinates data from VPs to FPs
struct ReductionCoords {

float4 position : POSITION; float2 coord0 : TEXCOORD0; float2 coord1 : TEXCOORD1;
float2 coord2 : TEXCOORD2; float2 coord3 : TEXCOORD3; float2 coord4 : TEXCOORD4;
float2 coord5 : TEXCOORD5; float2 coord6 : TEXCOORD6; float2 coord7 : TEXCOORD7;

};
// Coordinates computation for parallel reduction of 3×3 pixels
ReductionCoords reductionVertex9(float4 position : POSITION, // Vertex coordinates in range [0.33, 0.66]

uniform float4x4 modelViewProjMatrix : state.matrix.mvp) // Transformation matrix
{

ReductionCoords output;
output.position = mul(modelViewProjMatrix, position); // Update volume position
output.coord0 = position.xy * 3 - 1.0f; // Adjust output range [0.33, 0.66] to input range [0, 1]
output.coord1 = output.coord0 + float2(1.0, 0.0); output.coord2 = output.coord0 + float2(0.0, 1.0);
output.coord3 = output.coord0 + float2(1.0, 1.0); output.coord4 = output.coord0 + float2(0.0, 2.0);
output.coord5 = output.coord0 + float2(2.0, 0.0); output.coord6 = output.coord0 + float2(1.0, 2.0);
output.coord7 = output.coord0 + float2(2.0, 1.0);
// Address for pixel (2, 2) cannot be precomputed due to limited number of VP registers
return output;

}
(a)

// Parallel reduction of 3×3 pixels
float3 reductionSum9RGB(ReductionCoords input,

uniform samplerRECT sampRect : TEXUNIT0) : COLOR
{

float2 coord8 = input.coord0 + float2(2.0, 2.0); // Address for pixel (2, 2)
float3 output = texRECT(sampRect, input.coord0).rgb; // Fetch pixel (0, 0)
output += texRECT(sampRect, input.coord1).rgb; output += texRECT(sampRect, input.coord2).rgb;
output += texRECT(sampRect, input.coord3).rgb; output += texRECT(sampRect, input.coord4).rgb;
output += texRECT(sampRect, input.coord5).rgb; output += texRECT(sampRect, input.coord6).rgb;
output += texRECT(sampRect, input.coord7).rgb;
output += texRECT(sampRect, coord8).rgb; // Reduction for (2, 2)
return output;

}
(b)

Fig. 5. GPU programs for parallel reduction. (a) Vertex program and (b) fragment pro-
gram reduce 3 × 3 neighbor pixels (0, 0) − (2, 2) into a single pixel (0, 0). Except for
(2, 2), all of coordinates addresses are precomputed by VPs instead of by FPs in order
to reduce computational amount. See [22] for details.

Table 2 shows the timing results with breakdowns. Our GPU-based method com-
pletes a registration task within 10 seconds, which is permissible time for surgical
assistances. We can also see that the method successfully reduces the time for DRR
and gradient image generation, as compared with the sequential method (CS). It also
demonstrates further acceleration against the cluster-based method (CP).

The parallel reduction for NCC computation reduces the amount of communication
from 56 KB to 20 B. This reduction effect is significant for the laptop PC platform G1,
because such platforms do not have high-speed graphics bus between the CPU and the
GPU. Even in desktop platforms, the data transfer time is reduced from 9 ms to 0.2 ms.

By comparing G2 with G3, we can see that the growth of GPU speed. That is, the
current generation G3 achieves almost double performance as compared with the pre-
vious generation G2. This result is reasonable because GPU performance has doubled
every six months [5].

We also investigate the robustness of our GPU-based method. Table 3 summarizes
the alignment results. We repeat registration tasks ten times with different initial points.

Table 1. Experimental environment. Notations CS and CP are serial and parallel CPU environ-
ment, respectively. The remaining are GPU environments: G1 is a laptop PC; G2 and G3 are
desktop PCs with a previous generation GPU and a current generation GPU, respectively.

Environment CS CP G1 G2 G3

of nodes 1 32 1

CPU
Pentium 4 Pentium 3 Pentium M Pentium 4 Pentium 4
2.8 GHz 1.0 GHz 2.0 GHz 2.8 GHz 3.4 GHz

GPU

—

Quadro FX Quadro FX GeForce
Go 1400 3400 7800 GTX

Core clock (MHz) 125 350 430
Memory clock (MHz) 332 900 1200
Memory bandwidth (GB/s) 19.4 28.8 38.4
Fill rate (Gpixels/s) 2.2 4.2 10.3
Network — Myrinet 2000 —

Table 2. Timing results. Total time is the product of time per step and 300 steps.

Real spine Femur phantom
V : 512 × 512 × 204 voxels V : 256 × 256 × 367 voxels

Breakdown ROI: 300 × 300 × 48 voxels ROI: 54 × 38 × 55 voxels
IF : 300 × 200 pixels IF : 300 × 200 pixels

CS CP G1 G2 G3 CS CP G1 G2 G3

DRR generation 2940 142 38.6 26.4 17.1 810 31 26.7 14.1 5.8
Gradient image 142 7 8.4 5.2 1.7 197 7 8.4 5.3 1.7
NCC computation 9 46 57.6 5.3 2.7 3 14 55.7 5.3 2.7

Reduction — — 7.9 4.9 2.4 — — 7.9 4.9 2.4
Data transfer — — 49.6 0.2 0.2 — — 47.7 0.2 0.2

Time per step (ms) 3091 195 104.6 36.9 21.5 1010 52 90.8 24.7 10.2
Total steps 300
Total time 15 m 58 s 31 s 11 s 6 s 5 m 15 s 27 s 7 s 3 s

The registration is regarded as successful if the final TRE is less than 0.5 voxels, namely
0.66 mm for the spine data and 1.56 mm for the femur data.

As we can see in Table 3, our GPU-based method returns successful results if the
initial TRE is less than 10 mm. There is no significant difference between the cluster-
based method and the GPU-based method in terms of robustness. The results also show
that using biplane images instead of a single image is necessary to obtain precise align-
ments in the depth direction.

Finally, we compare our method with a mipmap-based method [11], which we men-
tioned in Section 4. Table 4 summarizes the registration results. By comparing this ta-
ble with Table 3, we can see that our method provides more robust results against the
mipmap-based method. Furthermore, the registration performance of the mipmap-based
method is almost the same as that of our method. Thus, we think that mipmap textures
are not suited to parallel reduction due to computational error.

(a) (b)

(c) (d)

Fig. 6. Biplane images of real spine and femur phantom datasets.

6 Conclusion

We have presented a fast 2-D/3-D registration method for biplane images using a GPGPU
approach. Our method reduces registration time by eliminating performance bottle-
necks on the CPU: DRR generation; gradient image generation; and NCC computation.
Our method performs reduction operations on the GPU in order to minimize the amount
of communication between the CPU and the GPU.

The experimental results show that our GPU-based method successfully completes
a registration task in ten seconds. This timing result on the GPU is faster than that on
the 32-node cluster. With respect to registration errors, the method demonstrates similar
results as compared with CPU implementations. Thus, we think that our GPU-based
method is useful for computer-aided surgery in terms of performance and robustness.
As compared with the cluster-based method, we also think that the GPU-based method
provides more attractive solution to medical doctors, because it needs less maintenance
cost and less power consumption with higher fault tolerance.

Acknowledgments. This work was partly supported by JSPS Grant-in-Aid for Scien-
tific Research on Priority Areas (17032007) and Scientific Research (B)(2)(18300009).

Table 3. Robustness results in terms of TRE (mm). Registration is done ten times for each. “Pass”
represents the number of successful registration in ten trials.

Initial Real spine Femur phantom
TRE GPU single GPU biplane CPU biplane GPU single GPU biplane CPU biplane
(mm) TRE Pass TRE Pass TRE Pass TRE Pass TRE Pass TRE Pass
2– 4 2.37 4 0.10 10 0.27 10 7.05 0 0.53 10 1.13 8
4– 6 3.38 2 0.13 10 0.25 10 5.49 1 0.45 10 1.63 6
6– 8 3.98 3 0.09 10 0.24 10 6.04 1 0.51 10 3.27 2
8–10 6.84 0 0.09 10 1.70 9 7.18 0 0.94 9 12.71 1

10–12 5.10 3 1.46 8 3.12 8 8.48 0 0.68 9 9.34 0
12–14 7.48 0 1.11 7 8.92 4 6.63 0 0.73 9 11.19 1
14–16 12.41 1 5.87 4 7.25 5 6.91 0 1.86 9 15.18 1
16–18 13.73 2 7.09 4 13.73 2 7.09 0 5.37 5 16.46 0
18–20 19.88 0 11.13 2 13.17 3 7.19 0 4.83 5 22.63 0
20–22 10.84 1 10.71 2 18.48 1 8.72 0 6.58 5 22.23 0

Table 4. Robustness results obtained by the mipmap-based method [11]. In this experiment, we
perform biplane registration with GPU-based DRR generation for the mipmap-based method,
which originally performs single-image registration using the CPU-based DRR generation.

Intial Real spine Femur phantom
TRE TRE Pass TRE Pass
2– 4 2.09 2 1.22 10
4– 6 1.85 1 1.17 10
6– 8 3.37 1 6.12 5
8–10 6.20 0 9.86 1

10–12 10.74 0 11.98 0
12–14 8.24 0 11.27 0
14–16 19.47 0 15.96 0
16–18 19.39 0 14.50 0
18–20 16.98 0 19.31 0
20–22 20.18 0 21.04 0

References

1. Lemieux, L., Jagoe, R., Fish, D.R., Kitchen, N.D., Thomas, D.G.T.: A patient-to-computed-
tomography image registration method based on digitally reconstructed radiographs. Medi-
cal Physics 21(11) (1994) 1749–1760

2. Hajnal, J.V., Hill, D.L., Hawkes, D.J., eds.: Medical Image Registration. CRC Press, Boca
Raton, FL (2001)

3. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)
114–117

4. Montrym, J., Moreton, H.: The GeForce 6800. IEEE Micro 25(2) (2005) 41–51
5. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance com-

puting. In: Proc. Int’l Conf. High Performance Computing, Networking and Storage (SC’04).
(2004)

6. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient algorithms
for solving dense linear systems on graphics hardware. In: Proc. Int’l Conf. High Perfor-
mance Computing, Networking, Storage and Analysis (SC’05). (2005)

7. Takizawa, H., Kobayashi, H.: Multi-grain parallel processing of data-clustering on pro-
grammable graphics hardware. In: Proc. 2nd Int’l Symp. Parallel and Distributed Processing
and Applications (ISPA’04). (2004) 16–27

8. GPGPU: General-Purpose Computation Using Graphics Hardware (2005) http://www.
gpgpu.org/.

9. Ino, F., Kawasaki, Y., Tashiro, T., Nakajima, Y., Sato, Y., Tamura, S., Hagihara, K.: A parallel
implementation of 2-d/3-d image registration for computer-assisted surgery. In: Proc. 11th
Int’l Conf. Parallel and Distributed Systems (ICPADS’05), Volume II Workshops. (2005)
316–320

10. LaRose, D.A.: Iterative X-Ray/CT Registration Using Accelerated Volume Rendering. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA (2001)

11. Chisu, R.: Techniques for Accelerating Intensity-based Rigid Image Registration. PhD
thesis, Technische Universität München, München, Germany (2005)

12. Li, S., Pelizzari, C.A., Chen, G.T.Y.: Unfolding patient motion with biplane radiographs.
Medical Physics 21(9) (1994) 1427–1433

13. Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.: A comparison
of similarity measures for use in 2-D–3-D medical image registration. IEEE Trans. Medical
Imaging 17(4) (1998) 586–595

14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: NUMERICAL RECIPES in
C: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK (1988)

15. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell,
T.J.: A survey of general-purpose computation on graphics hardware. In: EUROGRAPHICS
2005, State of the Art Report. (2005) 21–51

16. Khailany, B., Dally, W.J., Kapasi, U.J., Mattson, P., Namkoong, J., Owens, J.D., Towles, B.,
Chang, A., Rixner, S.: Imagine: Media processing with streams. IEEE Micro 21(2) (2001)
35–46

17. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide. fourth edn.
Addison-Wesley, Reading, MA (2003)

18. Hillesland, K.E., Lastra, A.: GPU floating point paranoia. In: Proc. 1st ACM Workshop
General-Purpose Computing on Graphics Processors (GP2’04). (2004) C–8

19. Stevenson, D.: A proposed standard for binary floating-point arithmetic. IEEE Computer
14(3) (1981) 51–62

20. Cullip, T.J., Neumann, U.: Accelerating volume reconstruction with 3D texture hardware.
Technical Report TR93-027, University of North Carolina at Chapel Hill (1993)

21. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: A system for programming
graphics hardware in a C-like language. ACM Trans. Graphics 22(3) (2003) 896–897

22. Ikeda, T., Ino, F., Hagihara, K.: A code motion technique for accelerating general-purpose
computation on the GPU. In: Proc. 20th IEEE Int’l Parallel and Distributed Processing Symp.
(IPDPS’06). (2006) 10 pages (CD-ROM).

23. Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based regis-
tration. IEEE Trans. Medical Imaging 17(5) (1998) 694–702

24. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., Su,
W.K.: Myrinet: A gigabit-per-second local area network. IEEE Micro 15(1) (1995) 29–36

