
Minimizing Data Size for Efficient Data Reuse in
Grid-enabled Medical Applications�

Fumihiko Ino1, Katsunori Matsuo1, Yasuharu Mizutani2, and Kenichi Hagihara1

1 Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

ino@ist.osaka-u.ac.jp
2 Faculty of Information Science and Technology, Osaka Institute of Technology

Abstract. This paper presents a data minimization method that aims at reducing
overhead for data reuse in grid environments. The data reuse here is designed
to promote efficient use of grid resources by avoiding multiple executions of the
same computation in a collaborative community. To promote this at the program
block level, our method minimizes the data size of attribute values, which are
used for identification of computation products stored in a database (DB) server.
Because attribute values are specified in queries used for store, search, or retrieval
of computation products, their reduction leads to less communication between
computing nodes and the DB server, minimizing the runtime overhead of data
reuse. We also show some experimental results obtained using a time-consuming
medical application. We find that the method successfully reduces the data size
of a query from 683 MB to 52 B. This reduction allows our data reuse framework
to reduce execution time from approximately 9 minutes to 27 seconds.

1 Introduction

With the rapid advance of network technology, the computational grid [1] is emerging as
an attractive platform for computational scientists. For example, grid technology allows
us to build high performance computing environments in virtual organizations. The key
role of grid technology here is to make it possible to share computational resources and
database (DB) contents in a specific virtual community constructed over the grid.

In contrast, some researchers are trying to share computation products in addition to
hardware and software resources mentioned above. This data sharing approach avoids
multiple executions of the same computation submitted by (usually different) users in
the collaborative community. Therefore, grid resources are dedicated to produce new
data, achieving highly efficient use of resources. For example, Quantum Chemistry
Grid [2] provides a grid-enabled problem solving environment capable of accumulating
computation products obtained by a computational chemistry program. Since this envi-
ronment focuses on a single program, data reuse can easily be realized by constructing a
DB where each of computation products is associated with attributes, namely the inputs
� This work was partly supported by JSPS Grant-in-Aid on Priority Areas (170320007), for

Scientific Research (B)(2)(18300009), and for Young Researchers (17700060).

2 Fumihiko Ino et al.

given to the program. Attribute values are then specified in queries to store, search, or
retrieve computation products in the DB.

On the other hand, Pegasus [3, 4] integrates a data reuse functionality into a work-
flow mapping system. A workflow here abstracts the processing sequence of data in dis-
crete steps. It consists of vertices and edges, representing application components and
their flow dependencies, respectively. Before mapping a workflow onto grid resources,
the system eliminates vertices in the workflow if the corresponding application compo-
nents have previously been executed with the same inputs. This elimination achieves
higher efficiency by replacing repetitive executions with data retrieval from the DB.

Thus, data reuse capabilities are useful to avoid wasteful executions in a virtual
community. However, data reuse is usually done at the program level. Therefore, the
efficiency can be further improved if data is reused within a program, for example, at
the block level. The problem addressed in the paper is to realize this block-level reuse
at a low overhead. We think that data reuse should work at a finer granularity to perform
data reuse at the appropriate granularity such as blocks, functions, or programs, chosen
according to the tradeoff between its repeatability and time saved by reuse.

In this paper, we present a data minimization method that aims at reducing overhead
for block-level reuse in grid environments. Our method requires users to specify the
program code for data reuse, and then minimizes the data size of attribute values, which
are used for identification of computation products stored in a DB server. The key idea
of our method is data dependence analysis that aims at replacing the initially specified
code with an extended code that requires less amount of attribute values for data reuse.

2 Related Work

Similar to Pegasus [3, 4], the GriPhyN virtual data system (VDS) [5] also provides a
data reuse capability to data-intensive applications. The VDS allows users to discover
and share virtual data products, compose workflows, and monitor workflow executions.
However, their data reuse model does not consider complex workflows having branches
or iterations. Dealing with these control flows is required to reuse computation products
for program blocks.

Altintas et al. [6] also realize a data reuse functionality for grid workflow systems.
Their functionality is designed to reuse workflows rather than computation products.
Therefore, their concern is the share of knowledge on effective workflows across differ-
ent scientific fields.

The AppLeS (Application Level Scheduling) Parameter Sweep Template (APST)
[7] maximizes reuse of shared data files by using adaptive scheduling techniques for
parameter sweep applications. It employs a replication strategy to minimize data trans-
mission between the client machine and computing nodes. Thus, this reuse functionality
works at the scheduling level, trying to place data files to maximize data reuse. With
respect to minimization of data transmission, our method also addresses the same prob-
lem. However, our method differs from APST, which does not minimize the data size
itself. Another replication-based strategy is also presented in [8].

Some researchers resolve the problem of data reuse in caches. Strout et al. [9] per-
forms data reuse to accelerate Gauss-Seidel methods. Their method improves intra-

Efficient Data Reuse in Grid-enabled Medical Applications 3

Table 1. Notations.

Notation Explanation
V A set of vertices
E A set of edges
G G = (V, E) defines a directed acyclic graph representing a workflow

(u, v) (u, v) ∈ E represents an edge from vertex u to vertex v
label(v) The name labeled on vertex v

label(u, v) The name labeled on edge (u, v)
value(u, v) Values (contents) of name label(u, v)

Iv Iv = {(u, v) | ∃u such that (u, v) ∈ E} defines the set of edges incoming to vertex v
Ov Ov = {(v, w) | ∃w such that (v, w) ∈ E} defines the set of edges outgoing from vertex v
Sv Sv = {〈label(u, v), value(u, v)〉 | (u, v) ∈ Iv} defines the set of pairs of labels and values passed

to vertex v
Tv Tv = {〈label(v, w), value(v, w)〉 | (v, w) ∈ Ov} defines the set of pairs of labels and values passed

from vertex v
R R ⊂ V denotes the set of vertices initially marked as the target code for data reuse

CR CR ⊆ R denotes the set of critical vertices that have attribute information for R, where
CR = {v ∈ R | ∃u such that u /∈ R ∧ (u, v) ∈ E}

AR AR =
⋃

v∈CR
Sv denotes the initial attributes for user-specified R

iteration and inter-iteration data locality in iterative solvers. Issenin et al. [10] performs
data reuse in a more explicit manner. They make copies of frequently used data in a
small local memory. Although these kinds of data reuse contribute to acceleration of
specific applications, their computation products are shared during a single execution.
In contrast, we focus on data sharing across multiple executions submitted from differ-
ent grid users.

Thus, our work tries to enhance data reuse in workflow-based systems and caches
by coupling the advantages of these two data reuse concepts.

3 Preliminaries

To decribe our problem clearly, we first introduce the program-level reuse addressed by
prior systems. Table 1 summarizes notations used in the paper.

Let G = (V, E) be a directed acyclic graph (DAG), where V and E represent a set
of vertices and that of edges in the graph, respectively. Graph G here has two special
vertices, source and sink, each having only outgoing edges and incoming edges, respec-
tively. Then, as shown in Fig. 1(a), prior systems [3, 4] regard a vertex and an edge as an
application component and a flow dependency between components, respectively. Each
vertex is labeled with a component name while each edge is labeled with a file name
given to the next component (destination vertex). In the following, let (u, v) denote the
edge connected from vertex u to vertex v.

Note here that communities should have a single name space to give a unique name
to identical data. Otherwise, data contents as well as fine names must be checked to pre-
vent inappropriate reuse of wrong data. Thus, prior systems assume a single name space
where identical components or files have a unique name. Let label(v) and label(u, v)
denote the name labeled on vertex v and on edge (u, v), respectively. Let value(u, v)
also denote the values (contents) of the name label(u, v).

Suppose that we have two DAGs G = (V, E) and G′ = (V ′, E′), where G and
G′ represent a workflow being considered for execution and that executed in the past,
respectively. Suppose vertex v ∈ V has a set Iv of incoming edges and that Ov of

4 Fumihiko Ino et al.

Filter Filter

Merge

a b

c d

e

Source

Sink

1 2

3

0

S

(a)

Filter

Merge

a

c

d

e

Source

Sink

1

3

0

S

(b)

#!/bin/sh

a='img1'

b='img2'

c='img3'

d='img4'

e='img5'

./Filter $a > $c

./Filter $b > $d

./Merge $c $d > $e

(c)

Fig. 1. (a) A directed acyclic graph (DAG) representing a workflow, (b) its reduced DAG for data
reuse, and (c) a shell script for the workflow. Vertex 2 and its edges (0, 2) and (2, 3) are replaced
with (0, 3), meaning that the second filter program is omitted by reuse of file ‘img4.’

v

1

label(v)

Filter

Merge

2

3

Filter

Sv Tv

<a, img1>

<b, img2>

<c, img3>, <d, img4>

<c, img3>

<d, img4>

<e, img5>

Query

DatabaseWorkflow

mapping system

Tv: computation products

Table

Example query:

SELECT Tv FROM Table

 WHERE label(v)='Filter'

 AND Sv='<b, img2>'

Fig. 2. Overview of data reuse in prior systems.

outgoing edges, where Iv = {(u, v) | ∃u such that (u, v) ∈ E} and Ov = {(v, w) | ∃w
such that (v, w) ∈ E}. Let Sv be the set of pairs of labels and values passed to vertex v:
Sv = {〈label(u, v), value(u, v)〉 | (u, v) ∈ Iv}. Let Tv also be the set of pairs of labels
and values passed from vertex v: Tv = {〈label(v, w), value(v, w)〉 | (v, w) ∈ Ov}.
Then, any vertex v and its every edge (u, w) ∈ Iv ∪Ov can be eliminated if and only if

C1. ∃x ∈ V ′ such that label(x) = label(v) ∧ Sx = Sv .

Such vertices v and x represent a program with the same inputs, and thus they are
identical computation. In this case, we already have computation products of x in the
DB. Therefore, graph G can be reduced for data reuse as follows (see Fig. 1(b)). (1)
Vertex elimination: Remove vertex v and its every incoming/outgoing edge (u, w) ∈
Iv ∪ Ov from set V and set E, respectively. (2) Vertex connection: For all w such that
(v, w) ∈ Ov , add edge (0, w) to E. Edge (0, w) here has label(v, w), representing
loading of computation products from the DB.

According to condition C1, data reuse capabilities require a DB that stores a set of 4-
tuples (v, label(v),Sv, Tv), as shown in Fig. 2. Given such a DB, identical computations
can be detected by comparing the two attributes label(v) and Sv to obtain computation
products Tv stored in the DB.

Prior systems typically reuse computation products in the following steps (Fig. 3).

S1. Workflow submission: The system receives a workflow, namely a DAG, from users.

Efficient Data Reuse in Grid-enabled Medical Applications 5

S1. Workflow submission

S3. Workflow instrumentation

S4. Workflow execution

S2. Workflow reduction (DB search)

Code instrumentation

Program execution

Data registration

Program execution

(DB search)

Data registration

Fig. 3. Procedure for data reuse. Left-hand side shows the procedure for prior program-level reuse
while right-hand side shows that for our block-level reuse.

S2. Workflow reduction: The DAG is reduced to exploit data reuse based on the DB.
S3. Workflow instrumentation: Some instrumentation vertices are added to the reduced

DAG for later registration of newly produced data.
S4. Workflow execution: This step consists of two substeps: Program execution step,

which executes each application component using grid resources; Data registration
step, which registers computation products to the DB after program execution.

4 Problem Description

In contrast to the program-level reuse, which prior systems support, our final goal is to
realize the block-level reuse during program execution. To achieve this, we must tackle
the following technical issues (see Fig. 3).

I1. Model extension: We must adapt the data reuse model mentioned in Section 3 to
our case, because we focus on blocks rather than programs. The extended model
must handle program structures and control-flow dependencies in programs.

I2. Code instrumentation: In addition to the workflow component, the source code in
programs must be instrumented to record computation products for each block.
The key issue here is to assist users in selecting the code to be instrumented for
data reuse.

I3. Runtime registration: Since we focus on program blocks, their computation prod-
ucts must be registered during program execution. Therefore, reducing runtime
overhead is a critical issue to obtain higher program performance. Note here that
prior systems are allowed to register data after program execution.

With respect to issue I2, we assume that users know which code takes most of exe-
cution time, and thus such bottleneck code can be initially specified as the instrumented

6 Fumihiko Ino et al.

n1

Source

Sink

1 2

10

S

5

16

17

vec

p1
p2

p3n2

n1 p1 p2 p3n2

img

7

0

1412

3 4

img

prm

vec

vec

(a)

 1: readln(n1); // File name 1

 2: readln(n2); // File name 2

 3: readln(p1); // Parameter 1

 4: readln(p2); // Parameter 2

 5: readln(p3); // Parameter 3

 6: h = 0; // Hierarchy

 7: img = load(n1, n2);

 8: while h<5 {

 9: if h == 0 {

10: prm = p1;

11: } else if h == 1 {

12: prm = p1 * p2;

13: } else {

14: prm = p1 * p2 * p3;

15: }

16: vec = registration(prm, img, vec);

17: vec = resample(img, vec); // Increase resolution

18: h += 1;

19: }

(b)

Fig. 4. Overview of (a) registration algorithm and (b) its DAG. Statements at lines 16–17 are
initially specified as the target code for data reuse. Enclosed labels on edges represent flow-
influenced variables.

code, which may save significant time and resources. Once such initial code is given
by users, our method tries to suggest better (extended) code with smaller attribute val-
ues. Thus, we assist users in selecting appropriate attributes with smaller data size. In
summary, the problem of data minimization can be defined as follows:

P1. The data minimization problem addressed in the paper is to minimize the data size
of attribute values required for the target code initially specified by users.

Note here that the data minimization contributes to resolve issue I3, because at-
tribute values are transmitted to the DB server as a part of queries. It also minimizes
accesses to storage devices on the DB server. Thus, data minimization will reduce run-
time overhead of data reuse.

5 Block-Level Data Reuse

We now present our data reuse framework based on an extension of the previous reuse
model and the data minimization method.

5.1 Model Extension

To resolve issue I1, we extend the model for our case as follows (see Fig. 4).

– On program structures. In our interpretation, a vertex and an edge in a DAG rep-
resent a statement in a program and a flow dependency between statements, re-
spectively. The label on a vertex and that on an edge represent the line number
of the corresponding statement and the variable names relevant to the dependency,
respectively.

Efficient Data Reuse in Grid-enabled Medical Applications 7

d e

Source

f

g h

i

Sink

a b

R={3, 5, 6}

CR={3, 6}

c

1 2 3

4 5

6

0

S

(a)

d e

Source

f

g h

i

Sink

a b c

1 2 3

4 5

6

0

S

R {4}

CR {4}

={3, 4}

(b)

Fig. 5. Data minimization. Given a DAG with a set R of vertices, {3, 5, 6}, our method returns
pairs of labels and values on edges (0, 3) and (4, 6) as the initial attributes. It then tries to replace
some edges to others with smaller data size. In this case, (a) edge (4, 6) is replaced with (b) edges
(1, 4) and (2, 4) if the data size of attribute g is larger than total size of attributes d and e.

– On control-flow dependencies. Since programs consist of branches and iterations,
which workflows in prior systems do not have, we associate labels with additional
properties to represent flow-influenced variables. For such variables, we consider
variables with loop-carried dependencies [11] or control-flow dependencies.

Figure 4 shows an example of the extended model. In this example, branch state-
ments at lines 10, 12, and 14 depends on runtime conditions, and thus their outputs,
namely the labels ‘prm’ on outgoing edges in the DAG, are marked as flow-influenced
variables. Similarly, variable ‘vec’ with a loop-carried dependency is also marked as a
flow-influenced variable.

5.2 Principles of Data Minimization

Suppose that we have a DAG G = (V, E) with a set R ⊂ V of vertices initially marked
as the target code for data reuse (see Fig. 5). Then, the initial attributes AR for R are
given by their inputs:

AR =
⋃

v∈CR

Sv, (1)

where CR represents the set of critical vertices that have attribute information for R:

CR = {v ∈ R | ∃u such that u /∈ R ∧ (u, v) ∈ E}. (2)

Let u ∈ V be a vertex such that u /∈ R. Given R by users, the proposed method tries
to extend R to include u to minimize the data size of inputs, namely attribute values.
Such an extension is allowed if

C3. v ∈ R, for all v such that (u, v) ∈ Ou.

8 Fumihiko Ino et al.

This extension tries to replace set Ou of edges outgoing from u with set Iu of edges
incoming to u. If this extension is allowed, the initial attributes AR can be replaced with
those for R ∪ {u} given by:

AR∪{u} =
⋃

v∈CR∪{u}

Sv, (3)

where
CR∪{u} = CR ∪ {u} − {w | w ∈ CR ∧ (u, w) ∈ Ou}. (4)

Condition C3 is not sufficient if vertex u corresponds to a flow-influenced state-
ment, such as branches and loops. For example, suppose that we have if-else statements
followed by the initial target code, as shown in Fig. 4(a). In this case, the extension
mentioned above may include branches at lines 9–15 to the target code for data reuse.
This implies that computation products vary depending on runtime conditions. In this
case, we must record branching results as well as computation products. Otherwise, the
replacement may result in wrong data reuse, because it does not have information on the
actual flow that have yielded the products. To avoid such wrong reuse, we store actual
flows by recording the value history list for flow-influenced variables.

In summary, data minimization is performed by extending R initially given by users.
Extended part here is allowed to include flow-influenced statements, however, the actual
flow must be recorded as attributes in the DB. We record this by the value history list
of flow-influenced variables to perform data reuse only for identical computation.

5.3 Data Minimization Algorithm

Figure 6 shows our algorithm, which tries to extend the target code R to obtain the
smallest attributes A. Basically, it backtraces flow dependencies from a vertex in set R.
The algorithm consists of the following three phases.

Phase 1. Extract the initial attributes AR. To do this, the algorithm computes a set CR

of critical vertices according to Eq. (2).
Phase 2. Extend the target code for data reuse. The algorithm then performs the code

extension to compute set L containing possible sets of critical vertices. This code
extension is done by recursive calls of function Extension(), as shown in Fig. 7.
This function backtraces flow dependencies from a start vertex u ∈ R. During
the backtracing of flows, candidates for critical vertices are added to set L at each
visited vertex. The backtracing procedure stops when it reaches (1) the source or
(2) a flow-influenced vertex. For the former case, it returns the current candidates
L. For the latter case, it stops further backtracing of flows because flow-influenced
variables cannot be removed from attributes, as we mentioned in Section 5.2.

Phase 3. Select the smallest attributes A. The attributes A are selected from set L of
sets of critical vertices. This phase is executed at runtime if flow-influenced vari-
ables are included in A, because the data size of such variables cannot be deter-
mined before program execution. That is, the value history list for such variables
grows during program execution.

Efficient Data Reuse in Grid-enabled Medical Applications 9

Algorithm DataMinimization(G, R)
// Input #1. DAG G = (V, E).
// Input #2. Set R of vertices representing the initial target code.
// Output. Attributes A extended from the initial attributes AR .
begin

// Phase 1: Extract the initial attributes AR

CR ← ∅; // initialize set C as an empty set
foreach vertex v ∈ R do begin

foreach edge (u, v) ∈ Iv do begin
if vertex u /∈ R then begin

Add vertex v to set CR;
end

end
end
Compute the initial attributes AR by using CR // see Eq. (1)
A ← AR ;
// Phase 2: Extend the target code by backtracing
L ← ∅; // L = {CR}: A set of sets of critical vertices
Add CR to set L;
foreach vertex v ∈ R do begin

L ← Extension(v, CR, L); // extend R from vertex v
end
// Phase 3: Select the smallest attributes
foreach set CR′ ∈ L do begin

Compute the attributes AR′ by using CR′ // see Eq. (1)
if AR′ is smaller than A then begin

A ← AR′ ;
end

end
end

Fig. 6. Data minimization algorithm. See Fig. 7 for function Extension().

6 Experimental Results

We now show how the method reduces data size and execution time to evaluate the
impact of block-level data reuse.

For experiments, we employ a cluster of 16 PCs, each having two Xeon 2.8 GHz
CPUs and 2 GB of main memory. PCs are interconnected by a Myrinet switch [12],
providing a bandwidth of 2 Gb/s. A DB system is constructed on a file server. This DB
server is accessible from PCs through Gigabit Ethernet network.

The application used for experiments is nonrigid image registration [13], which
computes point correspondences between two deformable objects. This application is
written using the C++ language and the Message Passing Interface (MPI) standard [14].
It requires three parameters and a pair of three-dimensional images as inputs. The image
size is 512 × 512 × 295 voxels, which is equivalent to 148 MB per image in file size.
From the viewpoint of program structures, this application have the following charac-
teristics (see Fig. 4).

– Computation intensive. Sequential implementations take several hours to process
the core functions, registration() and resample() at lines 16 and 17, respectively.

– Hierarchical algorithm. Registration is hierarchically performed in a coarse-to-fine
manner to reduce the computational amount. Each hierarchy requires a parameter
to control object deformations.

– Parametric study. While registration is controlled by three parameters ‘p1,’ ‘p2,’
and ‘p3,’ better parameter values are still unknown. Therefore, parametric study is

10 Fumihiko Ino et al.

Function Extension(v, CR, L)
// Input #1. Vertex v representing the current point for backtracing.
// Input #2. Current set CR of critical vertices.
// Input #3. Current set L of sets of critical vertices.
// Output. Updated set L.
begin

Llocal ← L;
if Iv = ∅ then begin // v has a predecessor

foreach edge (u, v) ∈ Iv do begin // try to include vertex u
if (u, v) is not a flow-influenced variable then begin

Llocal ← Extension(u, CR∪{u}, Llocal);
Add CR∪{u} to Llocal; // see Eq. (4)

end
end

end
return Llocal;

end

Fig. 7. Code extension algorithm.

Table 2. Data size of attribute values required to reuse data at each of hierarchy H1–H5. Attribute
‘img’ is replaced with ‘n1’ and ‘n2’ while attribute ‘vec’ is replaced with ‘n1,’ ‘n2,’ and ‘prm.’

Prior method w/o data minimization Our method w/ data minimization
Attribute H1 H2 H3 H4 H5 Attribute H1 H2 H3 H4 H5

img 680 M n1 6
vec 58 K 408 K 3 M n2 6
prm 8 prm 8 16 24 32 40
Total 680 M 680 M 683 M Total 20 28 36 44 52

needed to know better parameter values, and thus, registration tasks are repeatedly
submitted usually with the same pair of images but with slightly different combi-
nations of parameters.

Due to the last characteristic, we think that data reuse is effective to accelerate paramet-
ric study of nonrigid registration algorithms on the grid.

We first determine the target code for data reuse. Two functions registration() and
resample() are selected for data reuse, because these core functions take most (98%) of
execution time. We then manually applied our method to the registration program.

Table 2 shows data reduction results. We can see that the prior method requires
three attributes, namely all inputs directly given to the target function: ‘prm,’ ‘img,’ and
‘vec.’ Attributes ‘prm’ and ‘img’ are fixed-size variables containing 8 B and 680 MB
of data, respectively. On the other hand, the data size of attribute ‘vec’ increases as the
algorithm moves up the hierarchy, and thus it ranges from 58 KB to 3 MB. Summing up
these sizes, the prior method requires approximately 680 MB and 683 MB of attribute
values for the coarsest hierarchy H1 and for the finest hierarchy H5, respectively.

In contrast to the prior method, our method requires at most 52 B of attribute values.
This reduction can be explained as follows.

– Attribute ‘img’ is replaced with ‘n1’ and ‘n2,’ because it has larger data size and
satisfies condition C3. Vertex 7 in Fig. 4 intuitively explain this. In the example
code, this replacement means that image data can be replaced with its file name.

Efficient Data Reuse in Grid-enabled Medical Applications 11

0

1

2

3

4

5

6

7

8

9

10

Original L1 L2 L3 L4 L5

H5

H4

H3
H2

H1

E
x
ec

u
ti

o
n
 t

im
e

(m
)

Load

Fig. 8. Timing results. Each bar shows execution time and its breakdown for variation Li (1 ≤
i ≤ 5). Data reuse is applied to the program in a stepwise manner.

– Attribute ‘vec’ is replaced with ‘n1,’ ‘n2,’ and the value history list of ‘prm.’ Figure
4 indicates that ‘img’ and ‘prm’ must be included to attributes to remove ‘vec,’
because they are given as inputs to vertices 16 and 17, which output ‘vec.’ The
former attribute ‘img’ here is already replaced with ‘n1’ and ‘n2.’ On the other
hand, the latter attribute ‘prm’ is marked as a flow-influenced variable, and thus it
must be recorded with its value history list. Since ‘prm’ is a double variable, its size
is increased by 8 B at each hierarchy.

In order to activate data reuse in the application, we added function calls before and
behind the target functions. The added function here requires attributes and their values
to deal with 4-tuple data stored in the DB. We specified the smallest attributes in Table
2: ‘n1,’ ‘n2,’ and value history list of ‘prm.’

Figure 8 shows timing results for the original program and its five variations L1–L5.
Here, variation Li perform data reuse from hierarchy H1 to Hi, where 1 ≤ i ≤ 5. In
this figure, we can see that the original time of 9 minutes is reduced to approximately
30 seconds if all computations are allowed to be omitted by data reuse. Therefore, if
all of computation products are already stored in the DB, other programs can use grid
resources for approximately 8 minutes in this case.

Note here that hierarchy H3 takes most of execution time in the original program.
Therefore, data reuse is effective if the computation products of this hierarchy is reused
during program execution. In other words, data reuse at hierarchies H1, H2, and H3 was
not so effective in terms of performance.

7 Conclusion

We have presented a data minimization method for efficient data reuse in grid environ-
ments. As compared with prior methods, our method focuses on reusing computation
products at smaller granularities such as program blocks. The novelty of our method
is the data dependence analysis that minimizes the data size of attribute values by ex-
tending the target code of data reuse. The proposed method allows us to transmit less

12 Fumihiko Ino et al.

amount of data between computing nodes and the DB server, and thus contributes to
reduce runtime overhead of data reuse.

In experimental results, we find that the method reduces the data size from 683
MB to 52 B, achieving a small overhead for data reuse in a medical application. Our
reuse framework also accelerates the application from approximately 9 minutes to 27
seconds, achieving shorter response time with higher efficiency.

Future work includes the development of a tool that automates the instrumentation
of program code.

References
1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual

organizations. Int’l J. High Performance Computing Applications 15 (2001) 200–222
2. Nishikawa, T., Nagashima, U., Sekiguchi, S.: Design and implementation of intelligent

scheduler for gaussian portal on quantum chemistry grid. In: Proc. 3rd Int’l Conf. Com-
putational Science (ICCS’03), Part III. (2003) 244–253

3. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Laz-
zarini, A., Arbree, A., Cavanaugh, R., Koranda, S.: Mapping abstract complex workflows
onto grid environments. J. Grid Computing 1 (2003) 25–39

4. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for map-
ping complex scientific workflows onto distributed systems. Scientific Programming 13
(2005) 219–237

5. Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Dobson, J., Gilbert, E., Jordan, T., Quigg, E.:
Virtual data grid middleware services for data-intensive science. Concurrency and Compu-
tation: Practice and Experience 18 (2006) 595–608

6. Altintas, I., Birnbaum, A., Baldridge, K.K., Sudholt, W., Miller, M., Amoreira, C., Potier, Y.,
Ludaescher, B.: A framework for the design and reuse of grid workflows. In: Proc. 1st Int’l
Workshop Scientific Applications of Grid Computing (SAG’04). (2004) 120–133

7. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS parameter sweep template:
User-level middleware for the Grid. In: Proc. High Performance Networking and Computing
Conf. (SC2000). (2000)

8. Santos-Neto, E., Cirne, W., Brasileiro, F., Lima, A.: Exploiting replication and data reuse to
efficiently schedule data-intensive applications on grids. In: Proc. 10th Int’l Workshop Job
Scheduling Strategies for Parallel Processing (JSSPP’04). (2004) 210–232

9. Strout, M.M., Carter, L., Ferrante, J., Freeman, J., Kreaseck, B.: Combining performance
aspects of irregular Gauss-Seidel via sparse tiling. In: Proc. 15th Workshop Languages and
Compilers for Parallel Computing (LCPC’04). (2002) 90–110

10. Issenin, I., Brockmeyer, E., Miranda, M., Dutt, N.: Data reuse analysis technique for
software-controlled memory hierarchies. In: Proc. Design, Automation and Test in Europe
Conf. and Exhibition (DATE’04). (2004) 202–207

11. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance
computing. ACM Computing Surveys 26 (1994) 345–420

12. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., Su,
W.K.: Myrinet: A gigabit-per-second local area network. IEEE Micro 15 (1995) 29–36

13. Ino, F., Ooyama, K., Hagihara, K.: A data distributed parallel algorithm for nonrigid image
registration. Parallel Computing 31 (2005) 19–43

14. Message Passing Interface Forum: MPI: A message-passing interface standard. Int’l J.
Supercomputer Applications and High Performance Computing 8 (1994) 159–416

