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Abstract

This paper presents a two-stage compression method for accelerat-
ing GPU-based volume rendering of time-varying scalar data. Our
method aims at reducing transfer time by compressing not only the
data transferred from disk to main memory but also that from main
memory to video memory. In order to achieve this reduction, the
proposed method uses packed volume texture compression (PVTC)
and Lempel-Ziv-Oberhumer (LZO) compression as a lossy com-
pression method on the GPU and a lossless compression method
on the CPU, respectively. This combination realizes efficient com-
pression exploiting both temporal and spatial coherence in time-
varying data. We also present experimental results using scientific
and medical datasets. In the best case, our method produces 56%
more frames per second, as compared with a single-stage (GPU-
based) compression method. With regard to the quality of images,
we obtain permissible results ranging from approximately 30 to 50
dB in terms of PSNR (peak signal-to-noise ratio).

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.3 [Com-
puter Graphics]: Pixture/Image Generation—Display algorithms;
E.4 [Coding and Information Theory]: Data Compaction and Com-
pression;

Keywords: large-scale data visualization, data compression, tem-
poral coherence, spatial coherence, graphics hardware

1 Introduction

Volume rendering (VR) [Akenine-Möller and Haines 2002] plays
an increasingly important role in intuitive understanding of com-
plex phenomena in various fields such as fluid dynamics, life sci-
ences, and so on. In these fields, data becomes enormous with the
rapid advance of computing systems. For example, recent X-ray
computed tomography (CT) scans are capable of producing time-
varying three-dimensional (3-D) data instead of a conventional 3-D
snapshot. Thus, fast rendering of time-varying volume data is re-
quired to assist scientists in time series analysis [Ma 2003b].

One challenging issue in time-varying volume visualization is the
data size, which usually exceeds memory capacity. For example,
a volume of 512× 512× 512 voxels with 100 time steps requires
12.5 GB of memory if each voxel has 1-byte data. Therefore, it is
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not easy to store the entire data in main memory and apparently in
video memory. To solve this issue, we need out-of-core algorithms,
which store the data in disk and dynamically transfer a portion of
the data to video memory in an ondemand fashion.

There are two technical issues to be resolved for fast out-of-core
VR:

I1. Fast data transfer from storage devices to video memory;

I2. Fast VR of 3-D data.

To address the above issues, prior methods [Akiba et al. 2005;
Fout et al. 2005; Lum et al. 2002; Schneider and Westermann
2003; Binotto et al. 2003; Strengert et al. 2005] usually employ
(1) data compression techniques to minimize transfer time and
(2) hardware-acceleration techniques to minimize rendering time.
Most methods typically transfer pre-compressed data from storage
devices to video memory, and then perform volume projection us-
ing the graphics processing unit (GPU) [Fernando 2004; Montrym
and Moreton 2005] or parallel computers [Strengert et al. 2005;
Gao et al. 2005; Takeuchi et al. 2003].

Since data can be decompressed using the CPU and/or GPU, there
are three possible strategies for the decompression problem. Sup-
pose here that we have a GPU-based strategy that uses only the
GPU for data decompression. The main drawback of this strategy is
that it is not easy to achieve both fast decompression and high com-
pression ratio due to the limitation of the GPU architecture. For ex-
ample, current GPUs do not have large video memory (currently, at
most 1 GB). Furthermore, their stream architecture [Khailany et al.
2001] usually slows down the processing speed against complex,
irregular computation including branching statements.

In contrast, suppose also that we have a CPU-based decompression
strategy that uses only the CPU instead of the GPU. This strategy
will also suffer from low performance, because raw data is trans-
ferred from main memory to video memory. Therefore, both the
GPU and CPU should be used for data decompression to address
issue I1, as proposed in [Akiba et al. 2005].

In this paper, we present a two-stage compression method, aim-
ing at achieving fast VR of time-varying scalar data. Our method
addresses issue I1 by combining two compression/decompression
methods Mg and Mc, each running at the GPU side and at the CPU
side, respectively. Similar to Akiba’s method [Akiba et al. 2005],
the proposed method transfers compressed data through the entire
data path from storage devices to video memory. With regard to
issue I2, we employ a 3-D texture-based VR method [Cabral et al.
1994; Hadwiger et al. 2002] that makes use of hardware compo-
nents in the GPU.

The proposed method differs from Akiba’s method in using a dif-
ferent combination of methods Mg and Mc, which is designed to
enable better cooperation between the GPU and CPU. For Mg,
we use an extended version of volume texture compression (VTC)
[OpenGL Extension Registry 2004b], which exploits hardware ac-
celeration on the GPU. For Mc, on the other hand, we use Lempel-
Ziv-Oberhumer (LZO) compression [Oberhumer 2005], taking ad-
vantage of larger CPU caches (as compared to GPU caches) for
real-time decompression.
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Figure 1: Overview of volume texture compression (VTC).

Our extended version of VTC, named packed VTC (PVTC), has
two variations depending on the data structure: (1) PVTC for tem-
poral encoding (PVTC-TE) and (2) PVTC for spatial encoding
(PVTC-SE). These variations focus on the following coherences in
time-varying data.

Temporal coherence. The correlation between voxel values ob-
served at different moments in time.

Spatial coherence. The correlation between voxel values at differ-
ent voxels in space.

The rest of the paper is organized as follows. We begin in Section 2
by introducing VTC and LZO, namely the basis of our method. We
then present our two-stage compression method in Section 3 and
show some experimental results in Section 4. Section 5 introduces
related work. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Volume Texture Compression (VTC)

VTC [OpenGL Extension Registry 2004b] is a lossy compres-
sion method for volume data that consists of voxels having color
(RGB) and opacity (A) channels. It extends S3 texture compres-
sion (S3TC) [Iourcha et al. 1999; OpenGL Extension Registry
2004a] to support 3-D textures instead of 2-D textures. VTC
is standardized as a part of OpenGL extensions [Shreiner et al.
2003] that are available on nVIDIA GPUs [Montrym and More-
ton 2005]. There are four variations of the VTC algorithm in
terms of the internal format of the input data. Among them, we
use COMPRESSED RGB S3TC DXT1 EXT, which provides the
highest compression ratio for data in the RGB format.

Figure 1 shows an overview of VTC. It partitions the volume into
4×4×1 voxel blocks B1,B2, . . . ,BN , which are then applied to an
approximation algorithm to generate a compressed texture. This
algorithm replaces each of the blocks, namely 16 voxel values
v1,1,v1,2, · · · ,v4,4, with a sequence of data containing (1) two repre-
sentative values 〈c1,c2〉 and (2) a table T = {mi, j | 1≤ i≤ 4,1≤ j ≤
4}, where mi, j represents the linear interpolation mode for voxel
vi, j . In summary, VTC is a lossy compression method that approxi-
mates voxel values by linear interpolation of two representative val-
ues. This interpolation is independently done for each block, and
thus VTC exploits spatial coherence in a small block. As shown in
Figure 1, the compression ratio is 6:1, because VTC replaces each
48-byte block with 8-byte data.

Compressed textures can be decompressed by computing interpo-
lated values for each voxel. For example, if we have mi, j = 3

in table T , then the interpolated value for voxel vi, j is given by
(c1 + 2c2)/3, according to the predefined scheme [OpenGL Ex-
tension Registry 2004a]. Note here that on-the-fly decompression
is provided by VTC. Therefore, the entire volume is not decom-
pressed at a time, avoiding additional (five times more) memory
usage for decompressed data. Furthermore, this on-the-fly decom-
pression is fast because it is implemented as a hardware compo-
nent in the GPU. Since this component automatically recognizes
whether textures are compressed or not, no program modification is
needed to decode compressed textures.

2.2 Lempel-Ziv-Oberhumer (LZO) Compression

LZO [Oberhumer 2005] is a lossless, real-time data compres-
sion/decompression library based on LZ77 coding [Ziv and Lempel
1977]. Similar to VTC, LZO has various compression modes. In
this paper, LZO denotes LZO1X-1, which is considered the fastest
mode in most cases.

LZ77 is a dictionary coder, which scans the input data to replace
repeating data with references back to the original data. It has a
buffer, called a sliding window, to keep recent scanned data. If a
longest match is found in the sliding window, it performs the re-
placement mentioned above.

Therefore, LZO will obtain high compression ratio if the same data
sequence frequently appears in the sliding window. Furthermore,
LZO provides fast decompression, because it does not require com-
plex operations to decode data. It simply replicates the original data
to places where the references exist.

Note here that the window size in the LZO library is 64 KB, and
thus the sliding window can be stored entirely in CPU caches. This
size is equivalent to 8192 VTC compressed blocks, which corre-
spond to 512×256×1 RGB voxels.

3 Two-Stage Data Compression

In this section, we first show requirements for methods Mc and Mg.
We then describe the design of the proposed method, explaining
how PVTC-TE and PVTC-SE satisfy the requirements.

3.1 Requirements for Efficient Compression

When combining two different compression methods Mc and Mg
(see Figure 2), these methods must satisfy three requirements to
achieve fast VR of time-varying data. In the following discussion,
let T1 and T2 be the execution time for data transfer from disk to
main memory and that for data decompression, respectively.

The first requirement is a constraint to each of the compression
methods. Compression methods generally have to satisfy the fol-
lowing requirement in order to obtain timing reduction effects.

R1. Both Mc and Mg achieve high compression ratio sufficient to
pay decompression cost T2.

This requirement implies that there is a tradeoff relation between
compression ratio and decompression time. From this view-
point, although a high-compression method significantly reduces
the transfer time T1, it is not a satisfactory one if it fails to reduce
the total time T1 +T2.

On the other hand, the second and third requirements are inherent
in two-stage compression methods.
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Figure 3: Data compression using PVTC. (a) Time-series scalar voxels in the same location are packed into an RGB voxel in PVTC-TE while
(b) neighboring scalar voxels at the same time step are packed into an RGB voxel in PVTC-SE. This data packing generates a sequence of
compressed blocks, each containing time-series data or neighboring data.
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Figure 2: Overview of our two-stage compression method. Our
method is a lossy compression method, because PVTC approxi-
mates the raw data with interpolated data.

R2. Mc and Mg exploit different coherences.

Requirement R2 indicates that it is not effective if similar compres-
sion methods are repeatedly applied to the volume data. For ex-
ample, a combination of a temporal encoder and a spatial encoder
satisfies this requirement, because they focus on independent co-
herences.

R3. Mg outputs a sequence of data such that it keeps the coherence
exploited later by Mc.

This requirement comes from the nature of sequential execution of
methods Mc and Mg. For example, Mc and Mg are not a good pair
if Mg destroys the coherence which Mc exploits later in the second
compression stage.

3.2 Design Aspects

To satisfy requirements R1, R2, and R3, our method uses PVTC as
Mg and LZO [Oberhumer 2005] as Mc. Figure 2 shows an overview
of the proposed method. In the following discussion, let Vt denote
the volume at time step t, where t ≥ 0. Let Vt(x,y,z) denote the
voxel value of point (x,y,z) in volume Vt .

PVTC is a lossy compression method for time-varying volume data
containing scalar values. The novelty of PVTC is the data packing
that exploits all RGB channels of the inputs given to VTC [OpenGL
Extension Registry 2004b]. This data packing here intends to ex-
ploit temporal or spatial coherence in time-varying volume data,
which is defined over the time domain and the space domain. Thus,
we propose two variations of PVTC, named PVTC-TE and PVTC-
SE, which exploit temporal and spatial coherence, respectively. The
details of each variation are as follows (see also Figure 3).

PVTC-TE. This variation packs three scalar voxels V3t(x,y,z),
V3t+1(x,y,z), and V3t+2(x,y,z), namely time-series voxels in
the same location, into an RGB voxel.

PVTC-SE. It packs three scalar voxels Vt(x,y,3z), Vt(x,y,3z +1),
and Vt(x,y,3z + 2), namely neighboring voxels at the same
time step, into an RGB voxel.

From the viewpoint of the requirements stated in Section 3.1, PVTC
and LZO will satisfy requirement R1, because they provide fast
decompression as follows.

• VTC compressed textures are decompressed by hardware
components in the GPU. Furthermore, the GPU exploits two
parallelisms to further accelerate this decompression: (1)
single instruction multiple data (SIMD) instructions [Grama
et al. 2003] and (2) vector instructions, allowing us to simul-
taneously process different voxels in a volume and different
channels in a voxel, respectively.

• LZO is a real-time data compression/decompression library
based on LZ77, which offers low-cost decompression as we
mentioned in Section 2.2.

With respect to requirement R2, the combination of PVTC and LZO
satisfies this requirement, because PVTC and LZO focus on differ-
ent coherences as follows.

• PVTC-TE exploits temporal and spatial coherence in a small
block while PVTC-SE exploits spatial coherence in a small
block.

• In contrast, LZO exploits spatial coherence across small
blocks, because it receives PVTC compressed textures as in-
puts.

This can be further explained as follows. The sliding window in
LZO is equivalent to 8192 blocks, as we mentioned in Section 2.2.
Given such blocks, LZO tries to find the longest match in these
blocks. Therefore, LZO is responsible for exploiting coherence
across small blocks. If we combine PVTC-SE with LZO, these
8192 blocks contain a single time step of 512 × 256 × 3 scalar
voxels, because three neighboring scalar voxels are packed into an
RGB voxel. On the other hand, PVTC-SE performs interpolation
against a block of 4× 4× 3 scalar voxels. Thus, both LZO and
PVTC-SE exploit spatial coherence in the volume but with differ-
ent responsible areas. The coherence in small 4×4×3 area is due
to PVTC-SE while that in large 512× 256× 3 area is due to LZO.

Finally, requirement R3 can be satisfied as follows.

• PVTC can keep the coherence between different blocks in the
input volume, because it will encode similar blocks into com-



// The idle callback function registered by glutIdleFunc() // The display callback function registered by glutDisplayFunc()
void Loading() void Rendering()
{ {

t = (t < tmax) ? t++ : 0; // Update time step t if (t%3 == 0) {
if (t%3 == 0) { cgGLBindProgram(PVTC TE R.cg); // See Figure 4(b)

Step 1; // See text for details } else if (t%3 == 1) {
Step 2; cgGLBindProgram(PVTC TE G.cg);
glCompressedTexImage3d(compressed texture Xt ); // Step 3 } else {

} cgGLBindProgram(PVTC TE B.cg);
glutPostRedisplay(); // Call the display callback function }

} Update the angle of compressed texture Xt ; // glRotatef()
Slice Xt perpendicular to the viewing direction; // glVertex3f()
glutSwapBuffers(); // Display the produced image

}
(a)

// A fragment program for obtaining R channel data in compressed texture Xt
void PVTC TE R(

in float4 texCoord : TEXCOORD0, // Texture coordinates normalized in the range [0,1]
out float4 color : COLOR0, // Output color
uniform sampler3D PVTC Texture : TEXUNIT0) // Compressed texture Xt

{
color = tex3D(PVTC Texture, texCoord).rrrr; // Specify gggg or bbbb if G or B channel data is required.
color = Transfer Function(color); // Step 6

}
(b)

Figure 4: Overview of PVTC-TE implementation with branch elimination. (a) The CPU program and (b) fragment program written using the
OpenGL library and the Cg toolkit. Branching statements are moved from the fragment program to the CPU program. See text for details of
steps 1–6.

pressed blocks with similar representatives and tables. Thus,
the coherence between blocks in the raw volume is also kept
in compressed textures for later compression by LZO.

• The coherence mentioned above is expressed in the format of
compressed textures, because PVTC produces fixed-size data
for each block in first-in, first-out (FIFO) order.

From the viewpoint of architectural design, our combination aims
at achieving fast decompression by taking advantage of the GPU
and CPU architectures as follows.

• The GPU has hardware acceleration capability which the CPU
does not have. VTC is accelerated using this capability with
SIMD and vector instructions.

• The CPU has larger caches as compared to texture caches in
the GPU. Larger caches are suited to duplicating operations
in LZO decompression, because these operations refer large
area in the sliding window, which cannot be stored in small
texture caches. In other words, the CPU cooperates with the
GPU by providing larger caches to accelerate decompression
for large area.

3.3 Data Compression

We now describe how the proposed method compresses the volume
data. Let Ct denote the t-th input of VTC, namely the packed (raw)
volume of RGB data, where 0≤ t < tmax. Let Ct(x,y,z) be the voxel
value of point (x,y,z) in packed volume Ct . Then, the compression
procedure can be written as follows.

1. Data packing. The method packs the raw data into RGB data
to obtain a packed volume Ct , according to one of the follow-
ing modes.

• PVTC-TE mode. Three scalar values V3t(x,y,z),
V3t+1(x,y,z), and V3t+2(x,y,z) are copied to R, G, and
B channels of Ct(x,y,z), respectively. Empty values are
added as padding data if necessary (tmax mod 3 �= 0).

• PVTC-SE mode. Three scalar values Vt(x,y,3z),
Vt(x,y,3z + 1), and Vt(x,y,3z + 2) are copied to R, G,
and B channels of Ct(x,y,z), respectively. Empty val-
ues are also added if necessary (Z mod 3 �= 0, where Z
represents the volume size in z-axis direction).

2. Data compression by VTC. The packed volume Ct is given to
VTC to obtain a compressed texture Xt .

3. Data compression by LZO. The compressed texture Xt is
given to LZO to obtain a doubly compressed texture Zt .

The above procedure is repeated with incrementing time step t.

3.4 Data Decompression

The proposed method repeatedly decompresses doubly compressed
textures during visualization. Note here that PVTC-TE is allowed
to load data at every three time steps, because each of compressed
textures in PVTC-TE contains time-series data. The decompression
is done in the following steps (see also Figures 4 and 5).

1. Data loading from storage devices. A doubly compressed tex-
ture Z�t/3	 (Zt , for PVTC-SE) is transferred from disk to main
memory.

2. Data decompression by LZO. The CPU decompresses Z�t/3	
(Zt , for PVTC-SE) to obtain a compressed texture X�t/3	 (Xt ,
for PVTC-SE).



// A fragment program for obtaining the appropriate data in compressed texture Xt
void PVTC SE(

in float4 texCoord : TEXCOORD0, // Texture coordinates normalized in the range [0,1] for x- and y-coordinate
// z-coordinate is specified in the range [0,Z −1], where Z represents the volume size in z-axis direction

out float4 color : COLOR0, // Output color
uniform sampler3D PVTC Texture : TEXUNIT0, // Compressed texture Xt
uniform float zsize) // Texture size 
Z/3�−1 of Xt in z-axis direction

{
float zCoord = floor(texCoord.z); // Omit fractions
float zMod = fmod(zCoord, 3);
zCoord = (zCoord−zMod)/3; // z-coordinate in Xt (in the range [0,�Z/3	])
// Data fetch from Xt using z-coordinate normalized in the range [0,1]
color = tex3D(PVTC Texture, float4(texCoord.x, texCoord.y, zCoord/zsize, texCoord.w)).rgba;
// Select the appropriate channel
if (zMod == 0) {

color = color.rrrr;
} else if (zMod == 1) {

color = color.gggg;
} else {

color = color.bbbb;
}
color = Transfer Function(color); // Step 6

}

Figure 5: Overview of PVTC-SE implementation without branch elimination. The CPU program is omitted due to the space limitation. It
can be implemented similarly to PVTC-TE.

3. Data transfer from the CPU to the GPU. X�t/3	 (Xt , for
PVTC-SE) is transferred from main memory to video mem-
ory.

4. VR of compressed textures. Texture-based VR [Cabral et al.
1994; Hadwiger et al. 2002] is carried out with the following
steps 5 and 6.

5. Data decompression by PVTC. For all points (x,y,z) in Vt , lin-
ear interpolated value Ṽt(x,y,z) is computed automatically by
hardware components, as we mentioned in Section 2.1. That
is, the GPU obtains Ṽt(x,y,z) by simply accessing the corre-
sponding packed volume Ct(x,y,z), according to one of the
following modes.

• PVTC-TE mode. The GPU refers R, G, and B channel
data of C�t/3	(x,y,z) if t mod 3 = 0, 1, and 2, respec-
tively.

• PVTC-SE mode. The GPU refers R, G, and B channel
data of Ct(x,y,�z/3	) if z mod 3 = 0, 1, and 2, respec-
tively.

6. Data classification by a transfer function. The final color and
opacity of Ṽt(x,y,z) are determined by a transfer function.

The first three steps 1–3 mentioned above are processed at the CPU
side while the remaining steps are done at the GPU side. In our
method, these two groups of steps are structured in a pipeline, al-
lowing the CPU to load the next data just after pushing the current
data to the GPU. Thus, our method overlaps CPU computation with
GPU computation to obtain higher throughput from the pipeline.
Note here that the throughput is limited by the bottleneck stage in
the pipeline: steps 1–3 or steps 4–6.

Figure 4 shows an overview of our PVTC-TE implementation writ-
ten using the OpenGL library [Shreiner et al. 2003] and the C for
graphics (Cg) toolkit [Mark et al. 2003]. In this implementation,
conditional branches on time step t are eliminated from the frag-
ment program [Montrym and Moreton 2005] in order to obtain
higher performance on the GPU. This elimination is done by mov-
ing branching statements to the CPU program and by selecting the

(a) (b) (c)

Figure 6: Produced images using (a) turbulent jet, (b) turbulent vor-
tex, and (c) lung datasets.

appropriate fragment program according to time step t. Accord-
ingly, we write three different fragment programs, each refers R, G,
or B channel data in a compressed texture.

In contrast, as shown in Figure 5, it is not easy for PVTC-SE to real-
ize efficient branch elimination. This is due to the branch condition
on z-coordinate. This condition is not suited to the GPU, which
is designed to achieve higher performance by applying SIMD in-
structions to every point in the working texture. Therefore, to take
advantage of SIMD instructions, namely to move branching state-
ments from the fragment program to the CPU program, the raw
volume must be decomposed into three parts (z mod 3 = 0, 1, and
2) in advance of data compression. We currently avoid this de-
composition, because it increases runtime overhead due to volume
restoration incurred during data decompression. Thus, our PVTC-
SE implementation has branching statements in the fragment pro-
gram, as shown in Figure 5.

4 Experimental Results

We have evaluated our method in terms of rendering performance,
compression ratio, and image quality. The method is implemented
using the C++ language, the OpenGL library [Shreiner et al. 2003],



Table 1: Datasets used for experiments.

Dataset
Volume size Time File size Coherence

(voxel) step (MB) Temporal Spatial
D1 129× 129×104 99 163 Low High
D2 128× 128×128 99 198 Low Low
D3 256× 256×148 411 3802 High High
D4 258× 258×208 99 1307 Low High
D5 256× 256×256 99 1584 Low Low

and the Cg toolkit [Mark et al. 2003]. We also have implemented
another variation that employs zlib [Gailly and Adler 2005], a fam-
ily of LZ77 algorithms, as method Mc. As compared to LZO, zlib
usually provides a higher compression ratio but takes longer time
for data decompression.

For experiments, we use a commodity PC equipped with 2 GB of
main memory and 150 GB of serial ATA disk storage. The PC has
a Pentium 4 CPU running at 3 GHz clock speed and an nVIDIA
GeForce 6800 GTO card [Montrym and Moreton 2005] with 256
MB of video memory. The graphics card is connected to a PCI
Express bus.

Table 1 summarizes the five datasets D1–D5 [Ma 2003a] used for
experiments. See also Figure 6 for visualization results obtained
from datasets D1–D3. The remaining datasets D4 and D5 have al-
most the same results as D1 and D2, because D4 and D5 are high-
resolution versions of D1 and D2, respectively. Each dataset con-
sists of voxels of 1-byte data and has the following characteristics
in terms of coherence.

• D1. This dataset shows turbulent jets flowing from a nozzle. It
has low temporal coherence due to the moving jets. However,
it has high spatial coherence due to many transparent voxels.

• D2. Turbulent vortex flow is captured in this dataset. Both
temporal and spatial coherence is low, because the vortices
always move around the field and have few transparent voxels.

• D3. It shows a sequence of deformations of the lung. This
sequence represents the process of nonrigid registration [Ino
et al. 2005], which performs alignments between two 3-D im-
ages. Since the deformations are small, it has high temporal
coherence. Furthermore, it has high spatial coherence because
many voxels have similar values.

4.1 Rendering Performance

To demonstrate the performance gain of our method, we compare
the method with three variations: (1) a straightforward method that
transfers raw data from disk to video memory; (2) a single-stage
method that uses PVTC on the GPU but no compression method
on the CPU; and (3) a zlib-based two-stage method that combines
PVTC with zlib instead of LZO.

In experiments, datasets are rendered on the screen with the appro-
priate size: a 256×256 pixel screen for D1 and D2 and a 512×512
pixel screen for the remaining datasets. The viewing direction is
initially set to z-axis direction. It is then rotated 2 degrees around
x- and y-axes when time step t is updated.

Figure 7 shows frame rates measured using each of the methods.
Table 2 also shows the execution time T and its breakdown required
for rendering of a single frame. The breakdown here consists of
time T1 and T2, each representing the transfer time required to send
data from disk to main memory and the decompression time spent
by method Mc (LZO or zlib), respectively. Thus, time T1 and T2

correspond to step 1 and step 2 presented in Section 3.4. Further
breakdown analysis is not presented because we could not measure
the execution time of the remaining steps, which are processed by
underlying graphics APIs.

Firstly, we analyze the performance of PVTC-TE. Figure 7(a)
shows that the combination of PVTC-TE and LZO achieves higher
performance, as compared with the straightforward method. Thus,
the proposed method achieves a speedup ranging from a factor of
2.1 to 5.2 over the straightforward method. This performance gain
is due to the reduction of the transfer time T1, as shown in Table 2.
Actually, we can see that this reduction contributes to the reduction
of the total time T .

As compared with the single-stage (PVTC) method, the combina-
tion of PVTC-TE and LZO provides approximately 1–56% higher
performance to all datasets except D2. In contrast, the performance
is decreased by 10% for D2. This performance decrease indicates
that the data size reduction provided by LZO was not enough to
save time. We show this later in Section 4.2. Thus, LZO could not
satisfy requirement R1 for D2, which has low temporal and spatial
coherence.

By comparing LZO with zlib in two-stage methods, LZO achieves
1–6% higher performance for all datasets except D1. The break-
down analysis in Table 2 explains this performance gain over zlib.
We can see that zlib has relatively shorter transfer time T1 but re-
quires two times longer time T2 for data decompression. Due to this
long time T2, zlib fails to achieve shorter total time T1 +T2, as com-
pared to LZO. However, with respect to small dataset D1, there is
no significant difference between LZO and zlib. Thus, zlib might be
useful to small datasets. However, we think that this performance
gain is ignorable because data size is small.

Secondly, we analyze the performance of PVTC-SE presented in
Figure 7(b). By comparing the single-stage method of PVTC-SE
and that of PVTC-TE, we can see that PVTC-SE results in lower
performance in all cases. Moreover, even if PVTC-SE is combined
with LZO, this two-stage method shows almost the same perfor-
mance (±2%) as the single-stage method. In particular, it fails to
reduce the total time T for dataset D3, despite of significant re-
duction of time T1 + T2. Thus, the reduction of time T1 + T2 does
not lead to the reduction of the total time T . This is caused by the
branching statements in the fragment program. As we mentioned
in Section 3.4, PVTC-SE requires conditional branches at step 5,
which cannot be effectively processed on the GPU. Therefore, it
takes relatively longer time at the GPU side, being the bottleneck
stage in the pipeline (see Section 3.4). Thus, branching operations
on the GPU limit the throughput of the pipeline. Therefore, even if
time T1 +T2 is significantly reduced at the CPU side, this reduction
will not lead to higher performance in PVTC-SE.

Note here that we have confirmed that the fragment program of
PVTC-SE in Figure 5 achieves almost the same performance as that
of PVTC-TE if branching statements are simply removed from the
program. Although this removal apparently does not produce the
correct results, it indicates that branchless fragment programs are
necessary to achieve fast VR.

Finally, the transfer time T1 in PVTC-SE is longer than that in
PVTC-TE. This is due to the difference of the number of disk ac-
cesses required for a single time step. For example, PVTC-TE re-
quires only a single data access to load data of three time steps,
because it packs time-series data into a single compressed texture.
In contrast, PVTC-SE requires three accesses to load three com-
pressed textures. Therefore, PVTC-TE has relatively lower over-
head for a single volume, achieving shorter transfer time T1 for a
single frame.
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Figure 7: Rendering performance using (a) PVTC-TE and (b) PVTC-SE.

Table 2: Execution time required to render a frame (ms). T represents the total execution time required for rendering of a volume. T1 and
T2 are the breakdown of time T , each representing the transfer time from disk to main memory and the decompression time spent by LZO or
zlib, respectively.

w/o PVTC-TE PVTC-SE

Dataset
compression PVTC PVTC+LZO PVTC+zlib PVTC PVTC+LZO PVTC+zlib

T T T T T T T
T1 T1 T1 T2 T1 T2 T1 T1 T2 T1 T2

D1 44 52 8.7 23 6.0 2.0 22 3.6 3.4 21 15.7 35 7.0 1.8 33 7.0 2.8 34
D2 49 56 9.7 24 10.4 2.4 27 8.5 5.5 29 15.2 35 14.1 2.5 36 14.3 5.4 37
D3 284 302 45.6 90 6.0 2.7 58 5.7 6.6 59 39.0 117 12.7 3.6 117 10.1 7.0 117
D4 285 315 51.5 109 16.4 9.7 86 9.7 16.8 87 52.3 167 23.6 8.0 165 20.1 14.8 165
D5 347 388 60.0 138 32.0 14.4 125 23.0 28.2 130 63.2 184 50.7 19.6 183 38.7 35.9 184

Table 3: Average compression ratio for datasets.

Dataset
PVTC-TE PVTC-SE

PVTC +LZO +zlib PVTC +LZO +zlib
D1 6.0 12.0 17.4 5.9 16.7 22.3
D2 6.0 6.5 8.0 5.9 6.3 7.7
D3 6.0 67.0 81.1 5.9 58.6 64.4
D4 6.0 22.5 39.4 6.0 28.1 42.2
D5 6.0 12.0 17.5 5.9 8.6 11.3

4.2 Compression Ratio

Table 3 shows the compression ratio for each dataset. While the
single-stage (PVTC) method achieves a compression ratio of 6:1,
the two-stage method contributes to obtain more compact data with
reducing the data size to further 1/11–1/1.1. Note here that the com-
pression ratio of the single-stage method is not always exactly 6:1.
In some cases, it requires padding data, which decreases the com-
pression ratio to approximately 5.9:1, as shown in Table 3.

The combination of PVTC-TE and LZO (or zlib) achieves a com-
pression ratio of at least 12:1 for all datasets except D2. This means
that LZO (or zlib) reduces the data size of PVTC compressed tex-
tures into at least half. Recall here that this combination fails to
improve the performance for dataset D2 (see Section 4.1). Thus, in
our experimental machine, the two-stage method is effective if the
second-stage compression method further reduces the data size of
compressed textures into half.

For datasets D1 and D4, PVTC-SE achieves higher compression
ratio than PVTC-TE. For datasets D3 and D5, however, PVTC-SE
fails to outperform PVTC-TE. These results are reasonable accord-
ing to the design. That is, PVTC-SE, rather than PVTC-TE, is ef-
fective for data with low temporal coherence. On the other hand,
PVTC-TE is effective for temporally coherent data.

For the remaining dataset D2, the second-stage compression
method, namely LZO or zlib, is not so effective. The coherence
in this dataset is not so high, so that the match found in the sliding
window is not long enough to obtain high compression. Actually,
the compression ratio is at most 1.1:1 even if we apply LZO or zlib
directly to D2. Therefore, we think that lossy compression methods
such as PVTC are required to achieve fast VR for low-coherence
data.

Although PVTC is a lossy compression method, it allows us to
render larger volume data on the GPU. For example, a GPU with
512 MB of video memory is not enough to store a raw volume of
1024× 1024×1024 voxels, which contains 1 GB data. In PVTC-
SE, this data is reduced to 1/6, and thus approximately 170 MB of
video memory is sufficient to store the entire volume. On the other
hand, PVTC-TE must store a sequence of three volumes because it
packs them into an RGB volume. Due to this data packing, it re-
quires at least 512 MB (=1 GB/6*3) of video memory. Additional
video memory is also required for the frame buffer.
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Figure 8: Accumulated ratio of errors in rendered images. Pixel values are in the range [0,255].

Table 4: Image quality of rendering results (in PSNR).
Dataset PVTC-TE (dB) PVTC-SE (dB)

D1 31.5 31.9
D2 43.5 28.4
D3 47.6 44.6
D4 35.7 39.9
D5 49.5 36.1

4.3 Image Quality

We measured PSNR (peak signal-to-noise ratio) to evaluate the
quality of rendered images. Higher PSNR values represent higher
qualities with fewer noises. In general, PSNR values of at least
30 dB are desired for rendered images, and it is hard to see image
degradation if PSNR values are higher than 40 dB.

Table 4 shows PSNR values measured for each dataset. In most
cases, we observe PSNR values of at least 30 dB. These results are
competitive to prior work [Lum et al. 2002] that achieves similar
qualities ranging from 28.4 to 48.9 dB. Because we observe higher
PSNR values for high-coherence dataset D3, our method minimizes
image degradation against high-coherence data.

Figure 8 shows the accumulated ratio of errors in produced images.
The accumulated ratio of 80% at error 6 means that 80% of pixels
have an error within pixel value 6, as compared to the correct image
produced by the straightforward method.

In Figure 8(b), we can see that approximately 5% of pixels have an
error of at least pixel value 10. This means that the interpolation in
PVTC-SE was not so accurate in terms of image quality. Therefore,
PVTC-SE degrades the image quality for dataset D2. Due to the
same reason, we also observe image degradation for dataset D5.
Thus, PVTC-TE provides higher quality images than PVTC-SE in
these cases. However, there is no significant difference between
PVTC-TE and PVTC-SE except the cases mentioned above. Both
variations produce exact values for 80% of pixels.

Figure 9 presents a pair of images, each produced from the raw
data and from the PVTC compressed data. By comparing them in
a zoomed view, we can see some block artifacts in Figure 9(b), es-
pecially where neighboring pixels do not have similar values. Sim-
ilar tendencies are observed also for other datasets. However, these
artifacts do not significantly change the overall appearance of pro-
duced images. Thus, we think that the image quality of PVTC is
permissible to assist users in time-series analysis.

(a)

(b)

Figure 9: Comparison of rendering results (a) without compression
and (b) with PVTC-TE. Both images are rendered for dataset D2 at
the same time step.

5 Related Work

As we mentioned in Section 1, prior methods can be classified into
three groups in terms of where data is decompressed: (1) the two-
stage methods [Akiba et al. 2005], (2) the GPU-based methods
[Lum et al. 2002; Schneider and Westermann 2003; Binotto et al.
2003; Fout et al. 2005], and (3) the CPU-based methods [Strengert
et al. 2005]. Table 5 summarizes their differences.

To the best of our knowledge, only [Akiba et al. 2005] use both
the CPU and GPU for data decompression. In their method, the
CPU performs lossless compression [Clyne 2003] based on wavelet
transformation, which allows the selection of an appropriate resolu-
tion level from the raw data. On the other hand, the GPU partitions



Table 5: Comparison of our method with prior compression-based methods.

Method
Data decompression Lossless Exploited coherence
CPU GPU compression Temporal Spatial

PVTC-TE Yes Yes No Yes Yes
PVTC-SE Yes Yes No No Yes
[Akiba et al. 2005] Yes Yes Yes∗ No Yes
[Fout et al. 2005] No Yes No No Yes
[Lum et al. 2002; Fout et al. 2005] No Yes No Yes No
[Schneider and Westermann 2003] No Yes No Yes Yes
[Binotto et al. 2003] No Yes Yes Yes Yes
[Strengert et al. 2005] Yes No Yes No Yes
*: Voxel values outside the user-defined domain of interest are assigned transparent opacities.

the volume into 3-D blocks, which are then reduced by replacing
the same blocks with references to the representative block. Thus,
the GPU takes the responsibility for exploiting the coherence across
3-D blocks, as we do this by LZO on the CPU. The advantage of
their method is the multiresolution representation that allows us to
choose between interactivity and image quality at runtime. How-
ever, the compression ratio for the turbulent jet dataset is not so
high (2:1), and thus it is not clear whether the CPU cooperates well
with the GPU. On the other hand, our method is designed to pro-
vide better cooperation with exploiting the architectural advantages
of the CPU and GPU. Furthermore, our method exploits temporal
coherence, but with lossy compression.

On the other hand, many methods use only the GPU for data de-
compression. These GPU-based methods can be further classified
into three groups in terms of exploited coherence.

• Spatial coherence. [Fout et al. 2005] pack 2× 2× 2 neigh-
boring voxels into a vector, and then apply quantization to the
vector to approximate it with a representative vector. Thus,
this method is a lossy compression method, like as PVTC.
However, since this vector quantization method has more ap-
proximation modes than PVTC, it provides higher quality
(32–78 dB) but with lower compression ratio (3:1). Vector
quantization produces a sequence of data containing represen-
tative vectors, namely a codebook, and pointers to the repre-
sentative vectors. This sequence is more irregular than PVTC
compressed textures, which encode data without using arbi-
trary pointers. Therefore, a combination of vector quantiza-
tion and LZO seem not be a better solution than our combina-
tion, because the match found by LZO will not be so long due
to irregular inputs.

• Temporal coherence. In addition to the variation mentioned
above, [Fout et al. 2005] also propose another variation
that exploits temporal coherence. Like the relation between
PVTC-TE and PVTC-SE, this variation packs time-series
voxels instead of neighboring voxels.

[Lum et al. 2002] also exploit temporal coherence by using the
discrete cosine transform (DCT), which transforms data into
a set of coefficients. These coefficients are then quantized to
create a more compact representation, allowing us to discard
coefficients with higher energy, which are not important in
terms of image quality. Since the discard level can be selected
by users, their method allows us to choose the compression
ratio to control image quality.

• Spatial and temporal coherence. [Schneider and Westermann
2003] present a compression method based on vector quanti-
zation. This method initially partitions the volume into dis-
joint blocks of size 4× 4× 4, then recursively downsamples
each block to create a hierarchical data structure composed of

three vectors with length 64, 8, and 1, respectively. Each vec-
tor stores the difference between the original data and the re-
spective down-sampled value. It exploits temporal coherence
by performing vector quantization using the same codebook
between successive time steps.

[Binotto et al. 2003] realize a lossless compression method
that partitions the volume into 3-D blocks, which are then re-
duced by replacing the same blocks with the representative
block. This replacement is also done between different time
steps, and thus temporal coherence is exploited with spatial
coherence. Their method is effective for highly sparse and
temporally coherent data.

Finally, a CPU-based method is proposed in [Strengert et al. 2005].
This method is based on [Guthe et al. 2002], exploiting spatial co-
herence at each time step. It employs wavelet transformation to
generate a hierarchical octree, which is then compressed by an
entropy encoding. Similar to other wavelet-based methods, this
method provides multiresolution visualization. Their method might
be useful if the GPU, rather than the CPU, is a bottleneck in the
pipeline. However, the GPU is rapidly increasing its performance
beyond Moore’s low [Moore 1965; Montrym and Moreton 2005].
Therefore, we think that CPU-based methods will not be so effec-
tive on future environments, where the faster GPU will wait for
data coming from the slower CPU. In such environments, the GPU
should assist the CPU to stream more data through the entire data
path from storage devices to video memory.

6 Conclusion

We have presented a two-stage compression method for accelerat-
ing GPU-based VR of time-varying scalar data. Our method com-
bines PVTC with LZO, each running on the GPU and CPU, respec-
tively. The key contribution of the method is PVTC, which aims at
establishing better cooperation between the GPU and CPU. PVTC
has two variations, namely PVTC-TE and PVTC-SE, which focus
on temporal and spatial coherence, respectively. In both variations,
PVTC takes the responsibility for exploiting the spatial coherence
in a small block while LZO is responsible for exploiting the spa-
tial coherence across blocks. From the viewpoint of architectural
design, PVTC is accelerated by hardware components in the GPU
with on-the-fly capability while LZO is accelerated by larger caches
in the CPU with real-time design.

In experiments, the combination of PVTC-TE and LZO produces
56% more frames per second in the best case, as compared with the
single-stage compression method that uses PVTC-TE on the GPU.
Furthermore, this combination achieves a speedup ranging from a
factor of 2.1 to 5.2 over the straightforward method that does not
use compression methods. With respect to the quality of images,



we obtain permissible quality ranging from approximately 30 to 50
dB in terms of PSNR.

Our future work is to improve the scalability on the volume size,
which is limited by the capacity of video memory. Although our
out-of-core VR method provides a temporally scalable framework,
the method will be more useful if it is also spatially scalable.
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STRENGERT, M., MAGALLÓN, M., WEISKOPF, D., GUTHE, S.,
AND ERTL, T. 2005. Large volume visualization of compressed
time-dependent datasets on GPU clusters. Parallel Computing
31, 2 (Feb.), 205–219.

TAKEUCHI, A., INO, F., AND HAGIHARA, K. 2003. An improved
binary-swap compositing for sort-last parallel rendering on dis-
tributed memory multiprocessors. Parallel Computing 29, 11/12
(Nov.), 1745–1762.

ZIV, J., AND LEMPEL, A. 1977. A universal algorithm for se-
quential data compression. IEEE Trans. Information Theory 23,
3 (May), 337–343.


