SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

Trace Reduction for Performance Improvement
Assessment of Message Passing Parallel Programs

Fumihiko Ino,! Yuki Kanbe,?2 Masao Okita,! and Kenichi Halgihalra1
! Graduate School of Information Science and Technology, Osaka University, Toyonaka, 560-8531, Japan
2 Toshiba Corporation, Tokyo, 105-0023, Japan

Abstract— This paper proposes a trace reduction method
for assessing the improvability of the performance of message
passing parallel programs. This assessment is based on a what-if
prediction approach that forecasts future program performance,
for example, the execution time if the target program is modified
according to typical tuning techniques. Our method reduces the
size of trace files by aggregating records of communications that
do not change the predicted execution time. In order to avoid
recording such useless information, our method automatically
identifies them during program execution by comparing the
occurrence time of sends and receives. In case studies, our method
reduces the analysis time for what-if predictions as well as the
size of trace files roughly into half. We also discuss the usability
of our method.

Key words: message passing paradigm; performance improve-
ment; trace; performance prediction; parallel processing.

I. INTRODUCTION

Message passing paradigm [1] is a programming method
that is suited to distributed memory parallel systems such as
the cluster [2] and the Grid [3]. In this paradigm, processors
coordinately perform parallel computation by sending mes-
sages each other. For example, the Message Passing Interface
(MPI) standard [1] enables us to develop portable, high-
performance parallel programs. However, in order to obtain
such successful programs, we must repeatedly improve their
performance.

To assist developers in this time-consuming procedure,
many research projects have developed trace-based perfor-
mance analysis tools [4]. A trace here is a file generated
during a program execution and contains a chain of events
recorded with their information such as the time stamp when
the event occurred, the process id where it occurred, and so on.
An event occurs when a process executes a sequence of pro-
gram statements. For example, Multi-Processing Environment
(MPE) [5] provides predefined events, each corresponding to
an MPI routine.

Most of these tools are capable of visualizing performance
information recorded in traces. For example, ParaGraph [6],
Vampir [7], and Jumpshot [8] can present the timeline view,
allowing us to intuitively understand the process activities
such as message passing along the time axis. This visualiza-
tion approach is useful to locate performance bottlenecks in
programs. In contrast to this visualization approach, PerWiz
[9] is based on a what-if prediction approach that forecasts
future program performance. This approach is useful to guide
developers to places in a program only where a significant

improvement can be achieved. To realize this guidance without
any program modifications, PerWiz predicts what performance
will be obtained if some events take shorter execution time. For
example, by zeroing the execution time of a communication
event, we can know a lower bound on the entire execution
time achievable by some optimizations of the event.

Thus, trace-based tools provide developers useful capabili-
ties to support their time-consuming procedure. One problem
here is that such postmortem analysis tends to suffer from
lower scalability, because the size of trace files increases with
the number of occurred events. Furthermore, it usually takes
longer time to analyze larger trace files.

In this paper, we describe a trace reduction method for
assessing the improvability of MPI programs performance.
Our method aims at minimizing the size of trace files for
performing what-if predictions. To achieve this, our method re-
duces the trace size by aggregating records of communication
events that do not change the PerWiz’s prediction results. Such
useless records are automatically identified and aggregated
during program execution.

The rest of the paper is organized as follows. We begin
in Section II by introducing related work. We then present a
brief overview of PerWiz in Section III. Section IV defines
aggregating conditions making clear what kinds of events can
be aggregated in a trace file, and Section V describes our
runtime reduction method based on this definition. Section VI
shows case studies and Section VII discusses the usability of
our method. Finally, Section VIII concludes the paper.

II. RELATED WORK

Prior work on trace reduction employs one of the following

three strategies.

« Information aggregation strategy: This strategy performs
trace reduction with allowing the loss of information.
For example, Nickolayev et al. [10] propose a runtime
method that periodically evaluates the similarity of pro-
cess behaviors in order to generate traces only for some
processes that are representatives of the remaining similar
processes.

Pablo [11] focuses on the frequency of events in order to
select the appropriate level of details for trace generation.
To do this, it requires a threshold value on the frequency
of events, so that records only the number of occurred
events at the coarsest level.

Yan et al. [12] reduces the number of recorded events
by substituting averaged virtual events for precise actual

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

events. For example, when the same statement placed in
a loop generates a sequence of many events, their method
records only two values, namely the occurrence number
and an averaged execution time for these events. Thus,
the precise execution times are not recorded for every
event.

o Lossless data compression strategy: This strategy reduces
the trace file size without the loss of information. In
addition to the information aggregation strategy men-
tioned above, Yan et al. [12] further reduces the size
by replacing repetitive sequences with formulae. For
example, they record a formula of 0312 instead of a
sequence of 00011. Because this method focuses on the
repetition of data sequences, it is effective for the regular
part of traces, such as the source/destination process and
the communication tag, both recorded for communication
events. However, it is not so effective for the irregular
part, for example, the time stamp for events.

o Dynamic instrumentation strategy: This runtime strategy
dynamically controls trace generation during program
execution [13], [14]. Although this strategy is useful for
large-scale programs, it cannot support critical path (CP)
based analysis [15], which requires the entire trace from
the beginning to the end of a program execution.

Thus, there are many trace reduction methods for analyzing
the performance and behavior of programs. However, to the
best of our knowledge, there exists no reduction method that
supports what-if prediction. Except for lossless data compres-
sion strategy [12], the prior methods described above cannot
be used for this purpose, because they possibly eliminate the
key information necessary for what-if prediction (as described
later in Section VII-B).

In contrast to the prior work, which focuses on minimizing
traces for performance analysis, the objective of our work is
to minimize them for predicting future program performance
under specific assumptions. Summarizing the above descrip-
tion, the novelty of the paper is that we make clear the trace
reducing condition for this purpose and realize this reduction
during a program execution.

ITII. PERWIZ: A WHAT-IF PREDICTION TOOL

In this section we present an overview of what-if prediction
provided by PerWiz [9].

A. Assessing the Improvability of Performance

To assess the improvability of a target program M, PerWiz
generates its trace file £ and predicts the execution time of M,
assuming that any of events in £ takes shorter execution time.
Let T and T’ be the measured and the predicted execution
time of M, respectively.

In order to predict time T’, PerWiz reconstructs trace file
L by using the LogGPS model [16]. This trace reconstruction
generates a predicted trace file £’ such that £’ represents a
program execution under the assumption of shortened events.
Then, PerWiz computes the CP length for £’ so that obtains
time 7", enabling us to know the possibility of performance
improvement before modifying the target program M.

Figure 1 shows a brief overview of asynchronous and
synchronous communication behaviors under the LogGPS
model. The occurrence and the completion of a communication
event correspond to the call and the return of an MPI routine,
respectively. In this figure, w denotes waiting time required
for synchronization that can occur at both the sender and the
receiver side. As illustrated in this figure, the waiting time at
the receiver side is defined as the elapsed time from the call
of a receive routine to the arrival of the message. On the other
hand, at the sender side, the waiting time is defined as the
elapsed time from the arrival of a send request REQ to the call
of the matching receive routine. In the following discussion,
let @ — b be a communication from event a to event b. Let
ep,; also denote the i-th event occurred on process p.

Figure 2 shows an example of trace reconstruction. In this
example, we assume that the execution time of calculation
event e, ;1 is reduced to zero second. Subject to this assump-
tion, the succeeding event e, ; occurs on time t;“-, which is
earlier than the original time ¢, ; in trace £. Due to this earlier
occurrence of the event, we must estimate its completion time,
and this can be performed as follows.

o If e,, is a communication event, its execution time
usually includes the waiting time, which varies depending
on the send/receive timing between communicating pro-
cesses. Therefore, the execution time must be determined
in consideration of this timing, which can be changed
during prediction. PerWiz considers this by LogGPS, as
presented later in Section III-B.

e Otherwise, namely if e, ; is a calculation event, PerWiz
regards the measured time in £ as its execution time in
L’'. That is, PerWiz assumes that calculation events take
the same time, for all what-if predictions.

Applying this to events from the head to the tail of the original
trace £ generates the predicted trace L.

In the following discussion, let d,; denote the difference
between the occurrence time of e, ; in £ and that of the same
event in L', where dp; = tp; — 1, ;.

B. What-If Prediction by the LogGPS Model

In order to predict time T’ for the target program M, we
must estimate the difference for the last completed event in
trace £'. To do this, PerWiz reconstructs trace £ by estimating
the difference d, ;, for all event e,; € L, in the happened-
before order [17].

Under the LogGPS model, the difference for a communica-
tion event can be determined according to four cases. These
cases are classified in terms of the communication mode and
the waiting time. Figure 3 shows the differences derived for
a communication e, ; — €4;. In this figure, wg, ; represents
the waiting time for event e, ;, and x4, ; represents the elapsed
time from the arrival of an asynchronous message to the call
of the matching receive routine.

We now explain how the differences are derived for the
asynchronous case presented in Figure 3(a). In this case, there
is no waiting time at the sender, because this communication
mode does not require synchronization before transmitting
messages. Therefore, as same as for calculation events, the

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

execution times for send events stay fixed during trace re-
construction. This means that d,;+1 = dp;. On the other
hand, the execution time for a receive event usually consists
of waiting time. Therefore, the difference d, ;41 depends on
wy ;, where wy ; represents the waiting time for the receive
event ey ; after trace reconstruction. If there is no waiting time
w, ; after reconstruction, namely if dp; > dg; + wg,;, we
then have dg ;41 = dg ; +wg,;, because the execution time for
€q,; decreases by the eliminated waiting time w, ;. Otherwise,

if w, . > 0 (dp; < dg; + wg;), we then have dg ;11 =

4,7
dp,;, because the execution time increases by dg; — dp ;. In
summary, dq ;41 = min(dp;,dq; + wg,;), as presented in

Figure 3(a).

The remaining three cases can be derived in the same
manner. Thus, the difference for any event can basically be
determined according to the difference for the previous event,
its communication mode, and send/receive timing.

IV. IDENTIFYING AGGREGATABLE EVENTS

This section describes aggregating conditions for what-if
prediction.

A. Conditions for Event Aggregation

Suppose that we focus on an event in £ and regard its
execution time as zero second to assess the improvability
achievable by some modification of the event. Then, the
aggregatable events e, es,..., e, in L are defined such that
e1,€a,...,e, do not change the predicted time 7’ whether
they are aggregated or not. To keep the same time T’ after
event aggregation, we must keep the same difference for every
event. This is kept if the following two conditions R1 and R2
are satisfied.

R1: Events eq,es,...,e, are successive events occurred on
the same process.

R2: For any given assumption (what-if prediction), the sum
of the execution times for ej, es, ..., e, stays fixed.

For example, given n calculation events that satisfy conditions
R1 and R2, we then have the same predicted time 7", even if
they are aggregated into a calculation event.

On the other hand, when a communication event e, ;
belongs to aggregatable events ej, ea, ..., ey, it has to satisfy
the following condition R3 to meet R2.

R3: There exists a communicating event e, ; € £ [(ep; —
€q7j) V (eqd‘ — €p7i)} such that dp,i = dq,j'

That is, any communication event that keeps the same send/

receive timing for any assumption satisfies R2.

Figure 4 shows an example of event aggregation for trace
reduction. In this example, because communication events ey, ;
and e, ; satisfy condition R3, the number of recorded events
can be reduced by aggregating e, ; (e4,;) With its previous and
next calculation events e, ;1 and e ;41 (€q,j—1 and eq j41),
respectively. In this case, by recording an aggregated event
e;m_l with the sum of the execution times for events e, ;_1,
ep,i» and e, ;11, we can reduce the trace file size without
changing the predicted time 7". In addition, we regard e, ; ,
as a calculation event. The aggregation procedure mentioned

above can be similarly applied to event e;, ;j—1 at the receiver
side.

We now show that the predicted time 7" stays fixed for the
example presented in Figure 4, whether events are aggregated
or not. To do this, we show that the last events have the
same differences dp ;42 and d, ;4o after aggregation. In the
following, we discuss on d, ;y2, namely the sender side.
Firstly, when e, ; and e, ; in the original trace satisfy condition
R3, we have dp, ;41 = dp;, for all cases presented in Figure
3. Secondly, as mentioned before, we assume that traces
L and L’ record the same execution time for calculation
events. Therefore, dy,; = dp;—1. Similarly, dp 120 = dp i+1.
These three equations give d, ;12 = dp;—1 for the original
trace. On the other hand, we have d, ;12 = dp;—1 for the
reduced trace, because e, ; ; in this trace is a calculation event
with difference dj;—1. Thus, dp ;42 stays fixed after event
aggregation. In a similar manner, we can show that d, ;o at
the receiver side also stays fixed.

B. Aggregatable Communication Pattern

In Section III-B we have shown that the difference for
an event is dependent on that for the previous event, its
communication mode, and send/receive timing. This means
that the aggregatable event depends on the communication
pattern in the target program M. In the following we present
two examples of the communication pattern that causes an
aggregatable communication ey, ; — €4 ;.

C1: A communication e, ; — €4 ; satisfies condition R3 if
its previous communication e, ;2 — €4 j—2 18 a synchronous
communication. This can be explained as follows. According
to the results in Figures 3(c) and 3(d), the differences for
calculation events e, ;1 and e4 j_1, which occur immediately
after the synchronous communication, satisfy dp, ;1 = dg j—1.
Furthermore, because e, ;1 and e, ;1 are calculation events,
we have d, ; = dg,;, satisfying R3.

C2: A communication e,; — €4 ; satisfies condition R3
if its previous communication ej, ;2 — €4—2 is an asyn-
chronous communication with having waiting time wgy ;2 at
the receiver such that d, ;_2 < dg j—2 + wg,j—2. This can be
explained as follows. According to Figure 3(a), the difference
for calculation event e, ;1 at the receiver side is given by
dq,j—l = min(dpvi_g, qu‘_Q +wq7j_2) = dpﬂ'_g. Furthermore,
at the sender side, we have dp, ;1 = d, ;2 for calculation
event e, ;1. These two equations show that dp;—1 = dg 1,
and thereby d, ; = d, ;, as we presented for pattern CI.

Figure 5 shows an example of pattern C2. In this example,
processes p and ¢ communicate a round trip message. Note
here that there is waiting time when receiving the message.
The reason why this example satisfies pattern C2 can be
explained as follows. To simplify the notation, we write
dp,i—4 = u and dg j_4 = v in the following explanation.

If eqj—4 — eps—4a is a synchronous communication, it
satisfies C2 because dp;—2 = dg,—2 (according to Cl).
Otherwise, namely if it is an asynchronous communication,
we have dg j_3 = v and d}, ;—3 = min(v, u+wy ;—4) because
€q,j—4 — €pi—4 can be classified as the case in Figure
3(a). These two equations give dp ;—3 < dg ;—3. Furthermore,

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

because e, ;_3 and e4 j_3 are calculation events, we have
dp,i—2 < dqvj_g. Thus, €q,j—4 — €pi—4 satisfies C2.

V. AGGREGATING EVENTS

In this section we describe a trace generation method that
locates aggregatable communication events and aggregates
them during program execution. To make this description
easier, we begin with a postmortem method, which performs
event aggregation after program execution, and then present
our runtime method.

A. Postmortem Aggregation Method

We have presented conditions for event aggregation in
Section IV-A. Then, the remaining issues that must be solved
by aggregation methods are as follows.

The first issue is how to avoid aggregating events that can
be shortened during what-if prediction. These shortened events
do not satisfy condition R2, because their execution time
will be changed by PerWiz for what-if prediction. Therefore,
aggregation methods must locate such shortened events in
order to avoid aggregating them during trace generation.

To achieve this in advance of what-if prediction, our method
locates such events according to whether they will yield better
performance improvement or not. Because the improvement
achievable by an event is limited by the execution time of the
event, we locate them using a threshold value, for example,
a value associated with the execution time or the message
length.

The second issue is that some values of differences can
be computed only when performing what-if prediction, while
aggregatable events are located by comparing the differences
between two communicating events, as shown in condition
R3. These values depend on the assumptions specified by
PerWiz. Therefore, aggregation methods must provide flexible
representations for the differences, which cannot have precise
values but need to be comparable during trace generation.

To do this, our method represents a difference as an equation
with variables. Note here that this variable representation is
applied only to aggregatable events, according to the threshold
value mentioned before. Thus, when generating reduced trace
files, our method represents a difference as an equation with
variables rather than a value.

Figure 6 shows a postmortem aggregation method that
generates the reduced trace £’ from the original trace £. To
simplify the explanation, we assume that £ consists of only
communication events. Furthermore, we deal only with the
case in Figure 3(a): asynchronous communication with waiting
time at the receiver. The remaining three cases can be similarly
processed by adding branch statements based on the equations
in Figure 3, as we added them to lines 16 and 17 for the first
case (see Figure 6).

By using the equation in Figure 3(a), our postmortem
method computes the differences (lines 16 and 17) from
earlier happened events (line 4). During this computation,
the method omits recording occurred events (line 6) if they
satisfy condition R3 (line 19). Otherwise, it regards them as
unaggregatable, so that records them in the reduced trace £’

(line 8). In addition, for events that can be shortened for
what-if predictions, the method represents their differences as
variables so that avoids aggregating them (lines 13 and 14).
Repeating the above procedure for all events in the original
trace £ generates the reduced trace L£’.

B. Runtime Aggregation Method

As we mentioned before, we need to compare the differ-
ences between two communicating events in order to check
whether they are aggregatable or not. Because the differences
are dependent on both the sender and the receiver side, this
requires additional communication to aggregate events during
program execution.

For this reason, our runtime method adds some statements
to MPI implementations in order to compare the differences
whenever MPI routines are called in the target program. Figure
7 shows these statements added to the implementation of pure
MPI routines.

In order to avoid increasing the occurrence of communi-
cation, our method realizes this comparison at the receiver
side. In our method, the sender process p concatenates its
current difference d,,; to the outgoing message (lines 3 and
4), so that the receiver ¢ compares it with its own difference
dg; (line 11). In this receiver-compute rule, the sender p
also has to send the information on event e, ; to the receiver
q, because ¢ determines aggregatable events. Therefore, our
method also concatenates this information to the message, so
that the receiver takes the responsibility for recording both
events e, ; and eg ; (line 12).

Note here that variables representing a difference are re-
quired for every communication event that can be shortened
for what-if prediction. Therefore, the number of variables
increases when such communication occurs. This increase
results in higher overhead, because it also increases the amount
of information added to the original message. To keep this
overhead lower, we restrict the number of additional variables.
That is, our method communicates at most /m variables, so that
determines aggregatable events using the last m events.

VI. CASE STUDIES

We now show case studies to evaluate our method from the
following four viewpoints:

¢ Reduction amount of trace size;

o Analysis time for what-if prediction;
o Overhead for trace generation;

o Scalability of trace files.

In these studies, we used the MPICH-SCore [18] and
MPE [5] libraries, a fast MPI implementation and its trace
generation library, respectively. MPE allows us to visualize a
trace by using Jumpshot [8], a visualization tool widely used
and distributed with MPE. We also used a cluster of 64 PCs
interconnected by a Myrinet switch [19], yielding a full-duplex
bandwidth of 2 Gb/s. Each node in the cluster has a Pentium
IIT 1-GHz processor and 2 GB main memory.

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

A. Reduction Amount of Trace Size

We applied our method to an image registration application
[20], which finds point correspondences between two different
three-dimensional (3-D) images. Figure 8 presents a pseudo
code for this application. In this application, every process has
a portion of the images and operates control points overlaid
on the image space. To move each of M control points to an
appropriate place, processes perform an iterative optimization
in a concurrent manner. During this optimization, processes are
classified into groups such that processes in a group P, have
neighborhood pixels of a control point ¢ and participate in the
computation and communication required for ¢. Repeating the
computation and communication phases K times aligns the
images.

Table I shows the number of recorded events and its
breakdowns on 64 processes. In this table, N1 and N2 denote
the number for the unreduced (MPE) trace and that for our
reduced trace, respectively. The breakdowns are shown for
each ¢ of the K iterations. We aggregated events by using
the last three events (m = 3).

By comparing the total of N; to that of N, we can see that
our method reduces the number of recorded events roughly
into half. This reduction contributes to the reduction of trace
size from approximately 9 MB to 5 MB.

Table I also indicates that the reduction rate o of trace size
reaches 50% when 7 > 3, whereas it results in a lower value
when ¢ < 3. This lower value is due to the communication
pattern of the target program where many processes transmit
messages with frequently changing destinations. In this situa-
tion, our method tends to locate less aggregatable events, so
that the reduction rate results in a lower value.

Actually, this application has such a communication pattern.
Because communication occurs between processes that belong
to the same group, once all processes p € P, have the same
difference, all the succeeding events occurred on all p can be
aggregated according to condition R3. This indicates that the
more processes belong to a group, the less aggregatable events
will be. For example, our method achieves better reductions
for the fourth and sixth iterations (= 4 and 6), where
groups consist of at most 4 and 2 processes, respectively. In
contrast, groups at the first iteration (z = 1) consist at most
12 processes.

In addition to group size, frequent change of groups also
blocks our event aggregation. Suppose that there is a group
containing processes with the same difference. Once another
group communicates to this coordinated group, the difference
probably changes at the receiver. Thus, such incoming mes-
sages prevent processes from making the difference to be
the same value. Therefore, when this happens frequently, our
method cannot provide effective aggregation.

In summary, our reduction method is effective for programs
where processes repeatedly communicate each other in a small
group of processes.

B. Analysis Time for What-If Prediction

In order to make clear how reduced traces contribute to
faster what-if prediction, we measured the analysis time re-
quired by PerWiz. Table I shows times 7} and 7%, the analysis

time for the unreduced trace and that for the reduced trace,
respectively. The measurement was carried out on a node in
the cluster.

In this table, we can see that the proposed method reduces
the analysis time from 572.1 s to 275.5 s. Thus, reducing trace
size contributes to faster what-if predictions. We also can see
that oy < op for all breakdowns ¢. Therefore, the reduction
effect of trace size exceeds that of analysis time. This is due to
the time complexity of the what-if prediction because it takes
O(N?) time in the worst case, where N denotes the number
of events. Thus, we obtain oy < o7.

Although the reduced trace has less information, we ob-
tained the same predicted results as we did from the unreduced
trace. That is, PerWiz guides us to the same events with the
same priority, allowing us to efficiently improve the program
performance. Thus, our method reduces both trace size and
analysis time without changing what-if prediction results, so
that it provides developers a quick guidance.

C. Overhead for Trace Generation

There are three types of overheads in our method.

O1: The trace generation overhead (line 12 of Figure 7).

02: The aggregation decision overhead (line 11 of Figure 7).

03: The additional communication overhead (lines 3, 4, 9 and
10 of Figure 7).

Overhead Ol is involved in any trace generation method
whether it aggregates events or not. For example, MPE takes
Sus to record an event with 20 bytes data including an event
type ID, a time stamp, and source/destination process. Since
our method reduces the number of recorded events, it reduces
the total of overhead Ol.

Note that MPE basically writes event information into a
trace file after program execution. During program execution,
every process stores the information to a buffer in own main
memory.

In contrast to overhead O1, the remaining overheads O2
and O3 are unique to our reduction-based method. O2 requires
O(m) time in our method. When we use the last three events
for aggregation decision (m = 3), O2 is shorter than 1 us on
our cluster. Therefore, O2 can be ignored as compared with
Ol.

On the other hand, O3 requires O(m +) time, where [
denotes the length of the original message. This is due to the
message concatenation mentioned in Section V-B (lines 3 and
4 in Figure 7). Therefore, O3 is not short enough to ignore
its influence. This is especially true when we use more events
m for aggregation decision on higher speed network, because
message concatenation could take longer time than message
transfer.

Actually, the entire overhead in this application was dom-
inated by this message concatenation. When we execute this
application with generating the reduced trace, the execution
time was increased from 41 s to 45 s, while the unreduced
trace increases it to 42 s. Thus, it took 3 s to aggregate
events, which is mainly spent by memory copy operation for
concatenation. Although this concatenation increased the total
amount of communication by 2.8 MB, this additional amount
was small enough compared to the entire amount of 6.9 GB.

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

D. Scalability of Trace files

The three overheads mentioned above prevent us from
capturing accurate program behaviors because they can perturb
the program behavior and the execution time. Therefore, to
evaluate how our method tolerates this performance perturba-
tion, we applied our method to two programs that generate
many events. Evaluation is carried out in terms of event
frequency and trace size.

For the evaluation of event frequency, we used a range of
motion (ROM) estimation application [21], which computes
the safe ROM for an artificial joint. This program rapidly
detects rotational motions that avoid any impingements. To ac-
celerate this estimation, it employs a master/worker paradigm,
where master processes manage detection results for rotational
motions while worker processes check each of assigned mo-
tions whether it causes impingements.

Figure 9 plots the execution time of this application with
different task grain sizes 7, namely the number of rotational
motions in a task. In this figure, 75 and 7T denote the
execution time with reduced and unreduced trace generation,
respectively. 75 denotes the execution time without trace
generation. When a task consists of less than 30 motions
(v < 30), the overhead Ty — T} significantly increases as grain
size y decreases. At the minimum grain size, it takes 86 s
and 88 s to execute the program with unreduced and reduced
trace generation, respectively, whereas the original execute
time is 32 s. This indicates that overhead Ol dominates the
increased time, because master processes suffer from frequent
occurrence of events, as tasks () become smaller. As a result,
O1 becomes larger relative to the execution time measured for
the instrumented code, generating an inaccurate trace.

Note here that the rate of increased time 100(74/T5 — 1)
is below 11% when ~ > 30. In these grain sizes, less than 30
thousands events are recorded every second. This means that,
in order to achieve an accurate error of less than 10%, each of
the instrumented code need to be executed in at least 33 us.

As we mentioned in Section III-A, PerWiz estimates the
execution time of communication events by using LogGPS.
This estimation is accurate enough within 4% error [9].
Therefore, if the event order is kept as same in the original
execution, overheads O1, 02, and O3 might become a trivial
issue. However, these overheads might not be trivial if the
execution time is dominated by calculation time, because Ol
prevents us from generating accurate traces.

For the evaluation of trace size, we used a ping-pong
program that iteratively exchanges a fixed length (128 KB)
message between two processes until trace size exceeds the
physical memory capacity of a node (2 GB).

Figure 10 shows how the generated trace grows during
program execution. It plots the elapsed execution time along
the trace size axis. In this figure, T and 77 denote the
elapsed time measured with unreduced trace generation and
that without trace generation, respectively. Although 7% cannot
be measured directly, we estimated it from the number of
roundtrip and the message length. Note here that we did not
aggregate events during this measurement.

When trace size is less than 1920 MB, we are allowed to
measure the elapsed time 77 with an error of approximately

15%. However, when the trace grows beyond the physical
memory capacity, the error significantly increases, so that it
takes 183 s to execute the program with trace generation,
which is three times longer time than the original time, 50 s.
This significant increase is due to frequent memory swapping.
That is, as processes store more events to the buffer, it requires
more physical memory resources. Once these resources are
exhausted, application or trace data will frequently written to
a swap file, increasing the trace generation overhead.

In summary, our method and PerWiz can accurately assess
the improvability of programs such that:

« event frequency is low enough;
e Nno memory swapping during program execution;
« longer communication time with shorter calculation time.

The first two requirements are due to trace generation and the
last one is due to our method.

VII. DISCUSSION

In this section we discuss the usability of our method
from a viewpoint of application developers who improve the
program performance. To do this, we present how reduced
traces contribute to the improvement of program performance.
We also compare our method with prior methods.

A. Performance Improvement Procedure

PerWiz’s assistances can reduce developer’s efforts in the
following two procedures.

W1: Improvability assessment. As we mentioned in Sec-
tion III, PerWiz predicts the execution time of future
program, assuming that any of events takes shorter
execution time. This what-if prediction allows de-
velopers to avoid program modifications with less
improvement. For example, when we improved the
performance of the registration application by means
of waiting time elimination, PerWiz predicted that
eliminating the longest waiting time will not always
be the best modification [9]. In fact, this modifica-
tion increased the waiting time of the succeeding
events, resulting in little improvement. In contrast,
by eliminating the waiting time of events that PerWiz
guided us, we reduced the execution time by 8.6%,
as PerWiz predicted before program modification.

Performance bottleneck search. One of the advantage
of PerWiz is that it can compute a domino path
(DP) for a trace. Here the DP is a path containing
events that can yield a significant improvement of
the program performance. PerWiz locates such events
by repeating what-if prediction and presents in a
graphical view, as shown in Figure 11(b). Computing
the DP is useful to realize performance improvement
with less effort, because it consists of events that
can trigger a domino effect that shortens a chain of
many events. Due to this guidance, developers are
allowed to achieve more improvement with less ef-
fort. In the registration application case, we achieved
42.4% improvement by eliminating the waiting time

W2:

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

of seven events in the DP. On the other hand,
eliminating the longest seven waiting time results
in 12.9% improvement. Thus, though we applied
the same improvement method to the application,
PerWiz guidance realizes three times better improve-
ment.

By automating the above procedures, developers are allowed
to know the improvability of programs in advance of their
modification, so that can effectively improve the program
performance.

Figure 11 presents a timeline view analyzed by PerWiz. In
this timeline view, we have the process axis in vertical and
the time axis in horizontal. A colored rectangle corresponds
to a communication event. Figure 11(a) represents the process
behavior of a program execution and Figure 11(b) shows the
DP computed by PerWiz for this trace.

Note here that this visualization is not a visual assistance
that considers the results of trace reduction. Such a assistance
is left for future work. For example, because aggregated events
will not be influenced by any program modification, we would
intuitively understand the improvability of programs if we
could see aggregated events in a timeline view.

B. Qualitative Comparison

To make clear the technical novelty of our method, we
discuss whether the prior methods introduced in Section II
can deal with what-if prediction.

As we presented in Section III-A, the execution time of
the target program depends on the CP length. Therefore, to
automate procedure W1 by PerWiz, it requires the following
information (A): the CP length under arbitrary assumptions.
Our method satisfies conditions R1, R2, and R3 so that this
information (A) is always left in reduced traces, enabling what-
if prediction. In the following, we mention the prior methods.
Table II summarizes the comparison.

First, as we mentioned before, lossless data compression
strategy [12] keeps all of the information in traces. Therefore,
for lossless compressed traces, PerWiz can compute (A), so
that allowed to assess the improvability of programs. Note
here that this strategy does not reduce the number of recorded
events. Therefore, combining it with our method will achieve
further trace reduction. However, this strategy requires ad-
ditional overheads for data compression and decompression.
The data decompression overhead is the disadvantage of this
method because it makes PerWiz’s analysis time longer.

Next, information aggregation strategies [10]-[12] probably
fail to keep information (A) in traces. Therefore, in many
cases, PerWiz is unable to assess the improvability of programs
by using their traces. The first method [10], which focuses
on the similarly between process behaviors, stops recording
events occurred on non-representative processes. Therefore,
if the CP consists of such unrecorded events, PerWiz fails
to compute the CP. The second method [12], which focuses
on event frequency, omits recording the event type and the
event order at the coarsest level. Therefore, PerWiz also fails
to compute the CP. In contrast, the last method [11], which
focuses on the program structure, allows PerWiz to compute

the CP because it records the event type and the event order.
However, because this method records averaged time rather
than original time for each event, the CP length cannot be
accurately computed if there is a large gap between them.
Note here that PerWiz estimates communication time using
LogGPS. Therefore, this accuracy issue is related only to
calculation events.

Finally, dynamic instrumentation strategies [13], [14] stops
trace generation during program execution. Therefore, gener-
ated traces lack the information during this uninstrumented
period. This makes it impossible to compute the CP, so that
PerWiz is unable to assess the improvability of programs.
In contrast, PerWiz can assess the local improvability of
procedures if generated traces include all events occurred in
the target procedures. However, because the CP is unknown,
it is unable to assess how this local improvement leads to the
improvement of the entire program performance.

Summarizing the above comparison, the technical novelty
of our method is that it reduces the number of recorded events
with keeping the information (A) required for performing
what-if prediction (see Table II).

VIII. CONCLUSIONS

We have presented a trace reduction method for assessing
the improvability of MPI programs performance. Our method
reduces the size of trace files by aggregating records of com-
munications that do not change the execution time predicted by
PerWiz. This aggregation is automatically performed during
program execution. In case studies, our method reduces the
analysis time for what-if predictions as well as the size of
trace files roughly into half. Therefore, we believe that our
method is useful for developers to assess the improvability of
MPI programs performance without program modification.

Future work includes reducing the copy overheads for faster
message concatenation and developing a trace generation
method for large-scale programs. We are also planning on
coupling our method with lossless data compression to present
a qualitative evaluation.

IX. ACKNOWLEDGMENTS

This work was partly supported by JSPS Grant-in-Aid for
Young Scientists (B)(15700030) and NEC. We would like to
thank the anonymous reviewers for their valuable comments.

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

Call, [Return Call, w N Return
Process s | MPI_Send()| | MPI_Send() |
\Message REQ\ /ACK \Message
Process r | MPI_Recv() | MPI_Recv() |
dall w ' Return Call Return
Time Time
(a) (b)

Fig. 1. Overview of (a) asynchronous and (b) synchronous communication
behaviors under the LogGPS model. See [16] for more details.

p lépiz|epii] épi | plépiz] épi |
q | €qJ g [es |
| | | | Time ‘ “@{ | Time
tp,/ t,p,i t[Li
(a) (b)

Fig. 2. Trace reconstruction for what-if prediction. Trace file (a) before and
(b) after reconstruction. In this example, event e;, ;1 in the original trace is
assumed to take zero second in the reconstructed trace, so that the timestamps
of the succeeding events are estimated by the LogGPS model.

TABLE I
NUMBER OF RECORDED EVENTS ON 64 PROCESSES AND ANALYSIS TIME
FOR PERFORMING WHAT-IF PREDICTION USING PERWIZ.

of events Rate | Analysis time (s)| Rate
Breakdowns| MPE [Proposed| (%) | MPE | Proposed | (%)
N1 No onx| Th 1> o *
i=1 50,096 37,308 | 25.5|338.8| 204.3 39.7
i=2 35,120(22,932 | 34.7|158.7 66.1 58.3
=3 13,904 8,108 | 41.7| 21.0 4.8 77.1
i=4 21,152 1,908 | 91.0| 52.7 0.3 99.4
i=5 688 16 | 97.7| 0.0 0.0 {100.0
i=6 2,924 72 | 97.5| 0.8 0.0 {100.0
Others 58,876 28,084 | 52.3| — — —
Total 182,760| 98,428 | 46.1|572.1| 275.5 51.8

*ZO‘NZIOO(l—NQ N1),0‘T:100 1—T2 T1

dp,i <« <« dp,i+1:dp,i

p | €pi
Wq,j
q \ €qj |
dgj < <= dyj+1=min(dp.i, dgj+tWq,)

(a)

dp,i <“«— <« dp,HI:dp,i

p]
\ XaJ
q €4/

dgj <~ dyj+1=min(dy,, dp.itxq))

(b)

i < dpi+1=min(dp.i, dgj+Wq,)

@]
TRVl
q | € |
dqj < “dg,j+1= min(dp.i, dqj+wa,)
©
dp,i(_ <« dp,i+I:min(dq,j, dp,i+Wp,i)
12 ‘ ep,i ‘
NZIA
q | €4/]
dqzj « edqfrl:min(dq,j, dp,i+Wp,i)

(C))

Fig. 3. Definition of the difference under the LogGPS model. (a) Asyn-
chronous communication mode with waiting time and (b) without waiting
time. (c) Synchronous communication mode with waiting time at the receiver
and (d) at the sender.

p ‘ep,i—] ‘ Ep,i ‘ep,ﬁl‘ Ep,i+2
q ‘eq,j-l‘ €q,/ ‘eqﬁl‘eq,jﬁ
‘ Time
(@)
7
p | € pi-l | Ep.i+2
7
q | € g1 | €4.+2
‘ Time
(b)

Fig. 4. Event aggregation for trace reduction. Three events (a) in the original
trace are aggregated into an event (b) in the reduced trace.

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

(®)

Fig. 11. Predicted results in timeline view visualized by Jumpshot [8]. (a) The original trace and (b) its domino path.

TABLE II
COMPARISON OF TRACE REDUCTION METHODS IN TERMS OF CAPABILITY.

Reduction method Estimation of Reduction of Redution of
Strategy Method critical path length | recorded events trace size
. . Proposed Yes Yes Yes
Information aggregation [10]-[12] No Yes Yes
Lossless data compression [12] Yes No Yes
Dynamic instrumentation [13], [14] No Yes Yes
dp.i-a (=11) min(v, ut+wp,i-4) min(v, u+wp,i-4)
< Wp,i-4
‘ g o t o I int MPLSend(message) {
Process p ‘ Epid ‘ ‘ Epi2 ‘ ‘ Epi ‘ 2: tp,; = PMPI_Wtime(); // occurrence time of e ;
\ 3: Copy message to static_buf with dj, ; and t; ;;
Process g ‘ €q,j-4 ‘ ‘ €q,j-2 ‘ ‘ eq,j ‘ 4. PM_PI‘Sfa’Ed(St?t}C‘buﬁ;
T T T 5: dp,z-i,—l = dp,z,
Fhrs < w2 . . 6: }
i+ () v min(v, utwp.4) 7 int MPLRecv(message) {
8: tq,5 := PMPI_Wtime(); // occurrence time of e, ;

Fig. 5. Example of communication pattern that causes aggregatable com- 9: PMPI_Recv(static_buf);
munication. 10: Extract message, dp ; and t, ; from static_buf;
11:if (IsAggregatable(ep ¢, €q,5) = false) {
g: Record ey, ; and eq ; with), ; and tg ;;

Input: £, a trace file containing communication events 14: }
Output: £, an aggregated trace file

I: Algorithm Aggregate(Z) { Fig. 7. Runtime aggregation method for trace reduction.

2: L' :=0;// 0: empty set

3: while (L #0) {

4: Select ey, ;, €q,; € L such that e, ; — eq; is the

earliest happened communication;

5 if (IsAggregatable(ey, ;, eq,j) = true) {

6: Delete e, ; and ey, ; from L; // For aggregation

7: } else {

g Add ep,; and €4 ; to £’ and delete them from L; T for Ge T 2 K i) T
T 2 for (¢=1; ¢ < M; p+4) {
11: ? if (MPI_Comm_rank () € process group Pg)
12: function IsAggregatable(e, ;. eq, ;) .
13: if (ep,; or eq,; can be aI;l evezlt] wi{th assumptions) { 4 Local compqtatlpn; .
14: Leave dp ;11 and dg j 11 as variables; 5 Communication in Py using MPI_Send (),
15: } else { // For the case in Fig.3(a) MPIRecv (), and
16: d =d .- MPI_Sendrecv();

. Pl R . 6: }

17: dq,j+1 = mln(dp,i, dqyj + wq,j), 7
18 } P
19: if (dp,; = dg,;) { return true; } // Condition R3 8:
3(1) \ else { return false; } Fig. 8. Pseudo program for image registration.

Fig. 6. Postmortem aggregation method for trace reduction.

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

100

90 —A— T3: with reduced trace generation
—*— T4: with unreduced trace generation
80 —i- T5: without trace generation

Execution time (s)
wn
f=]

0 100 20 30 40 50 60 70 8 90 100
v: Number of rotations per task

Fig. 9. Relationship between task grain size and measured execution time
for range of motion estimation application.

]
[=1
(=)

—_
o«
(=]

—¥— T6: with unreduced trace generation

—_
(=)
(=]

—8— T7: without trace generation %

=
S

120
f

—_
(=3
(=]

>®©
(=]

=N
(=]

Elapsed execution time (s)

N
(=]

20

0 256 512 768 1024 1280 1536 1792 2048 2304
Trace size (MB)

Fig. 10. Relationship between trace size and elapsed execution time for
ping-pong program.

SYSTEMS AND COMPUTERS IN JAPAN, VOL. 37, NO. X, MONTH 2006

(1]

(2]
(3]

[4]

[5]

(6]
(7]

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Message Passing Interface Forum, “MPI: A message-passing interface
standard,” Int’l J. Supercomputer Applications and High Performance
Computing, vol. 8, no. 3/4, pp. 159416, 1994.

R. Buyya, Ed., High Performance Cluster Computing. Upper Saddle
River, NJ: Prentice Hall PTR, June 1999.

I. Foster and C. Kesselman, Eds., The Grid: Blueprint of a New
Computing Infrastructure. ~San Mateo, CA: Morgan Kaufmann, July
1998.

S. Browne, J. Dongarra, and K. London, “Review of performance
analysis tools for MPI parallel programs,” Dec. 1997, http://www.cs.
utk.edu/~browne/perftools-review/.

C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan,
E. Lusk, and W. Gropp, “From trace generation to visualization: A
performance framework for distributed parallel systems,” in Proc. High
Performance Networking and Computing Conf. (SC2000), Nov. 2000.

M. T. Heath and J. A. Etheridge, “Visualizing the performance of parallel
programs,” IEEE Software, vol. 8, no. 5, pp. 29-39, Sept. 1991.

W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of MPI resources,” J.
Supercomputing, vol. 12, no. 1, pp. 69-80, Jan. 1996. [Online].
Available: http://www.pallas.de/pages/vampir.htm

0. Zaki, E. Lusk, W. Gropp, and D. Swider, ‘“Toward
scalable performance visualization with Jumpshot,” Int’l J. High
Performance Computing Applications, vol. 13, no. 2, pp. 277-288,
June 1999. [Online]. Available: http://www-unix.mcs.anl.gov/perfvis/
software/viewers/

Y. Kanbe, M. Okita, F. Ino, and K. Hagihara, “A performance prediction
tool for evaluating potential improvement of message passing programs,”
IPSJ Trans. Advanced Computing Systems, vol. 44, no. SIG11, pp. 101—
110, Aug. 2003, (In Japanese).

0. Y. Nickolayev, P. C. Roth, and D. A. Reed, “Real-time statistical
clustering for event trace reduction,” Int’l J. Supercomputer Applications
and High Performance Computing, vol. 11, no. 2, pp. 144-159, 1997.

D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields,
B. W. Schwartz, and L. F. Tavera, “Scalable performance analysis: The
Pablo performance analysis environment,” in Proc. 3rd Scalable Parallel
Libraries Conf. (SPLC’96), Oct. 1996, pp. 104-113.

J. C. Yan and M. A. Schmidt, “Constructing space-time views from fixed
size trace files — getting the best of both worlds,” in Proc. Int’l Conf.
Parallel Computing (ParCo’97), Sept. 1997.

J. Yan, S. Sarukkai, and P. Mehra, ‘“Performance measurement, visu-
alization and modeling of parallel and distributed programs using the
AIMS toolkit,” Software: Practice and Experience, vol. 25, no. 4, pp.
429461, Apr. 1995.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall,
“The Paradyn parallel performance measurement tool,” IEEE Computer,
vol. 28, no. 11, pp. 37-46, Nov. 1995.

J. K. Hollingsworth, “Critical path profiling of message passing and
shared-memory programs,” IEEE Transactions Parallel and Distributed
Systems, vol. 9, no. 10, pp. 1029-1040, Oct. 1998.

F. Ino, N. Fujimoto, and K. Hagihara, “LogGPS: Modeling message-
passing protocols in high-level communication libraries,” IPSJ Trans.
High Performance Computing Systems, vol. 42, no. SIG9, pp. 145-157,
Aug. 2001, (In Japanese).

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558-565, July
1978.

F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design
and implementation of zero copy MPI using commodity hardware
with a high performance network,” in Proc. 12th ACM Int’l Conf.
Supercomputing (ICS’98), July 1998, pp. 243-250. [Online]. Available:
http://www.pccluster.org/

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second local
area network,” IEEE Micro, vol. 15, no. 1, pp. 29-36, Feb. 1995.
[Online]. Available: http://www.myri.com/

J. A. Schnabel, D. Rueckert, M. Quist, J. M. Blackall, A. D. Castellano-
Smith, T. Hartkens, G. P. Penney, W. A. Hall, H. Liu, C. L. Truwit,
F. A. Gerritsen, D. L. G. Hill, and D. J. Hawkes, “A generic framework
for non-rigid registration based on non-uniform multi-level free-form
deformations,” in Proc. 4th Int’l Conf. Medical Image Computing and
Computer-Assisted Intervention (MICCAI’01), Oct. 2001, pp. 573-581.

11

[21] Y. Kawasaki, F. Ino, Y. Sato, N. Sugano, H. Yoshikawa, S. Tamura, and
K. Hagihara, “Real-time estimation of hip range of motion for total hip
replacement surgery,” in Proc. 7th Int’l Conf. Medical Image Computing
and Computer-Assisted Intervention (MICCAI'04), Part II, Sept. 2004,
pp. 629-636.

Fumihiko Ino (member) received the B.E., M.E.,
and Ph.D. degrees in information and computer
sciences from Osaka University, Osaka, Japan, in
1998, 2000, and 2004, respectively. He is currently
PLACE an Assistant Professor in the Graduate School of
PHOTO Information Science and Technology at Osaka Uni-
HERE versity. His research interests include parallel and
distributed systems, software development tools, and
performance evaluation. He received the Best Paper
Award at the 2003 International Conference on High
Performance Computing (HiPC’03) and the Best
Paper Award at the 2004 Symposium on Advanced Computing Systems and
Infrastructures (SACSIS’04).

Yuki Kanbe received the B.E. and M.E. degrees
in information and computer sciences from Osaka
University, Osaka, Japan, in 2002 and 2004, re-
spectively. He is currently a Software Engineer at
PLACE Toshiba Corporation in Tokyo, Japan. His current
PHOTO research interests include performance prediction for
HERE high performance computing.

Masao Okita received the B.E. and M.E. degrees
in information and computer sciences from Os-
aka University, Osaka, Japan, in 2001 and 2003,
respectively. He is currently working toward the
PLACE Ph.D. degree at the Department of Computer Sci-
PHOTO ence, Graduate School of Information Science and
HERE Technology, Osaka University. His current research
interests include software development tools for high
performance computing.

Kenichi Hagihara (member) received the B.E.,
M.E., and Ph.D. degrees in information and com-
puter sciences from Osaka University, Osaka, Japan,
in 1974, 1976, and 1979, respectively. From 1994 to
PLACE 2002, he was a Professor in the Department of Infor-
PHOTO matics and Mathematical Science, Graduate School
HERE of Engineering Science, Osaka University. Since
2002, he has been a Professor in the Department of
Computer Science, Graduate School of Information
Science and Technology, Osaka University. From
1992 to 1993, he was a Visiting Researcher at the
University of Maryland. His research interests include the fundamentals
and practical application of parallel processing. He received the Best Paper
Award at the 2003 International Conference on High Performance Computing
(HiPC’03) and the Best Paper Award at the 2004 Symposium on Advanced
Computing Systems and Infrastructures (SACSIS’04).

