
Performance Study of LU Decomposition on
the Programmable GPU�

Fumihiko Ino, Manabu Matsui, Keigo Goda, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

ino@ist.osaka-u.ac.jp

Abstract. With the increasing programmability of GPUs (graphics processing
units), these units are emerging as an attractive computing platform not only for
traditional graphics computation but also for general-purpose computation. In this
paper, to study the performance of programmable GPUs, we describe the design
and implementation of LU decomposition as an example of numerical compu-
tation. To achieve this, we have developed and evaluated some methods with
different implementation approaches in terms of (a) loop processing, (b) branch
processing, and (c) vector processing. The experimental results give four impor-
tant points: (1) dependent loops must be implemented through the use of a render
texture in order to avoid copies in the video random access memory (VRAM);
(2) in most cases, branch processing can be efficiently handled by the CPU rather
than the GPU; (3) as Fatahalian et al. state for matrix multiplication, we find that
GPUs require higher VRAM cache bandwidth in order to provide full perfor-
mance for LU decomposition; and (4) decomposition results obtained by GPUs
usually differ from those by CPUs, mainly due to the floating-point division error
that increases the numerical error with the progress of decomposition.

1 Introduction

The GPU [1, 2] is a single-chip processor, which is designed to accelerate rendering
tasks for interactive visualization. Recently, GPUs on commodity PC graphics cards
are emerging as a novel high performance computing (HPC) platform with providing
faster floating-point operations than CPUs [3]. Newly added functionalities such as
programmability and branch capability make them an attractive HPC platform not only
for visualization purposes but also for general purposes.

Such new functionalities also activate the use of modern GPUs for solving numeri-
cal problems. Thompson et al. [4] implement matrix multiplication on a GPU, achieving
three times higher performance compared with a simple CPU implementation. Larsen
et al. [5] compare their GPU implementation with ATLAS [6], a cache-optimized CPU
implementation. They present two requirements for making their GPU implementa-
tion competitive against ATLAS: one is a significant increase of VRAM access speed
and the other is that of graphics chip core clock. To approach these requirements from
� This work was partly supported by JSPS Grant-in-Aid for Scientific Research on Priority Areas

(16016254).



the software side, Hall et al. [7] propose a VRAM cache and bandwidth aware algo-
rithm with its theoretical evaluation. Their algorithm is evaluated on real graphics cards
by Fatahalian et al. [3]. This experimental evaluation shows that higher VRAM cache
bandwidth is yet essential for GPUs to outperform ATLAS.

In addition to the problem of matrix multiplication, there are a wide variety of nu-
merical applications running on the GPU: the conjugate gradient method [8–10], the
Gauss-Seidel method [8], the projected Jacobi method [10], and the fast Fourier trans-
form [11]. Thus, many researchers try to accelerate numerical computations using the
GPU. However, it is still not clear what kinds of design guidelines will yield higher
performance on GPUs, mainly due to the rapid advances in GPU architectures. Further-
more, most vendors rarely disclose the details of their GPU architectures.

The goal of our work is to analyze the performance behavior of the GPU, aiming
at making clear the design guidelines for GPU accelerated numerical computations. To
achieve this, we focus on the problem of LU decomposition, which is used for rank-
ing top 500 supercomputers. We present its design with different implementation ap-
proaches in terms of (a) loop processing, (b) branch processing, and (c) vector process-
ing. We also show some performance studies using commodity PC graphics cards.

To the best of our knowledge, the key contributions of the paper are (1) the design
guidelines for the above implementation issues (a)–(c) and (2) the first GPU implemen-
tation for LU decomposition.

The paper is organized as follows. Section 2 presents a brief overview of the GPU ar-
chitecture and summarizes prior strategies for solving numerical problems by the GPU.
Section 3 describes the implementation approaches that compose our methods, and then
Section 4 shows the performance studies obtained on modern graphics cards. Finally,
Section 5 concludes the paper.

2 Graphics Processing Unit (GPU)

2.1 Overview of Architecture

The rendering task, which GPUs originally accelerate, is to compute pixels on the 2-D
image by projecting polygonal objects (triangles) located in the 3-D space. In order to
accelerate this compute-intensive task, modern GPUs [12, 2] employ a pipeline archi-
tecture as shown in Fig. 1. Due to limited space, we introduce only the programmable
part of this pipeline, namely vertex processors (VPs) and fragment processors (FPs).

VPs and FPs are vector processors with 4-length vector registers. These processors
have the following characteristics.

VP: VPs are capable of fast geometric transformation in order to accelerate the pro-
jection of vertices of polygons onto the 2-D space. They are based on a MIMD
structure [13] that allows applying different operations simultaneously to multiple
vertices. Here, the polygonal data must be transferred from the main memory to the
VRAM by using graphics APIs such as OpenGL [14] and DirectX [15].

FP: FPs are capable of rapid mapping of textures onto the 2-D image, aiming at pro-
ducing more realistic images. To perform this, they obtain projected pixels (called



CPU GPU

Rasterizer

3-D Triangles

Main

Memory Video Random Access Memory (VRAM)

Texture BufferVertex Buffer Pixel Buffer

Bus

2-D Triangles PixelsFragments

Programmable

Vertex

Processors

(MIMD)

Programmable

Fragment

Processors

(SIMD)

Fig. 1. GPU pipeline architecture.

fragments) from the rasterizer, and then execute some mathematical operations be-
tween the pixels and textures. Here, the textures are read from the VRAM, and the
mapping results are written to any buffer on the VRAM. FPs are based on a SIMD
structure [13] that allows applying the same operation simultaneously to multiple
fragments. There are two characteristics that must be mentioned. (C1) FPs support
4-length vector operations, because they deal with 4-channel (RGBA) data repre-
senting red, green, blue colors and opacity. (C2) Because textures are generally 2-D
images, FPs can be regarded as vector processors that execute independent opera-
tions on each element on a matrix.

As we mentioned in Section 1, recent advances have removed many limitations that
earlier GPUs have. For example, earlier GPUs do not have any control flow mechanism.
Furthermore, only short programs were executable due to the limitation on instruction
count. In contrast, modern GPUs allow more instructions with branch capability and
some GPUs follow a 32-bit single floating-point number representation based on the
IEEE standard [16]. Furthermore, by using the graphics APIs mentioned above, the
rendered results can be transferred (readback) from the VRAM to the main memory.

2.2 Prior Strategies for Accelerating Numerical Computations on the GPU

Recent work [3, 7–11] uses only FPs for numerical computation while earlier work [4]
uses VPs. This is due to lower performance of current VPs, which are not competitive
against CPUs [7]. For example, as we show later, VPs in nVIDIA’s GeForce cards
[17] provide 338 million vertices/s (namely, vectors/s), whereas FPs provide 3.6 billion
texels/s (vectors/s). Due to this performance characteristic, we also use only FPs for LU
decomposition.

In order to maximize the efficiency on FPs, prior work focuses on characteristics C1
and C2. For example, in a case of matrix multiplication XY = Z, each of elements Zij

can be computed independently. Therefore, FPs are allowed to simply render the result
matrix Z into a VRAM buffer by referring two textures each containing matrix data



1: Algorithm RightLookingLUDecomposition {
2: for (i = 0; i < N ; i + +) {
3: for (j = i + 1; j < N ; j + +) {
4: Aji = Aji/Aii; /* update L */
5: for (k = i + 1; k < N ; k + +)
6: Ajk− = Aik ∗ Aji; /* update U */
7: }
8: }
9: }

Fig. 2. Right-looking LU decomposition algorithm.

X and Y, respectively. Thus, a doubly-nested loop without any dependencies between
loop iterations can be efficiently processed by a single pass of the data through the
pipeline. Furthermore, to enable vectorization, some researchers pack the matrix data
into the 4-channel texture format. They store an N ×N matrix in an N/4×N texture,
multiplying the elements on four rows and one column at once.

Although the single-pass rendering approach mentioned above is effective for inde-
pendent nested loops, it must not be applied to a dependent nested loop, because such a
loop cannot be processed simultaneously due to dependencies between loop iterations.
This is one of the problems addressed in the paper.

The single-pass rendering approach is also inapplicable to programs whose size
exceeds the limitation on the instruction count. This limitation can be resolved by multi-
pass rendering, which aims at emulating the entire execution by dividing the program
into small parts. In this method, data is repeatedly passed through the pipeline with
varying the program parts at each pass.

In summary, prior work presents the following four guidelines for yielding higher
performance on GPUs:

– Apply single-pass rendering to independent doubly-nested loops that contain a
large amount of computation;

– Pack matrix data into the 4-channel texture format to enable vectorization and to
reduce the usage of VRAM;

– Reduce the amount and number of data transfer between the GPU and the CPU;
– Reduce the number of VRAM accesses to save the VRAM bandwidth.

3 LU Decomposition on the GPU

This section presents the design of LU decomposition on the GPU. Table 1 summarizes
our methods with their theoretical performance.

3.1 LU Decomposition

LU decomposition is a method for solving a linear system Ax = b. It factorizes a ma-
trix A into two triangular matrices: a lower matrix L and an upper matrix U. Then,



Table 1. Theoretical performance of proposed methods M1, M2, M3, and M4.

Vectorization Branch Loop
Rendering pass VRAM copy

Number Weight Number Amount (B)

M1 No CPU
Copying

2N 1
2N 32N(N2 − 1)/3

Switching 0 0

M2 No GPU
Copying

N 1
N 16N(N2 − 1)/3

Switching 0 0

M3 Yes CPU
Copying

8N 1/4
2N 2N(4N2 + 3N − 4)/3

Switching 0 0

M4 Yes GPU
Copying

4N 1/4
2N 2N(4N2 + 3N − 4)/3

Switching 0 0

the solution x is computed by forward and backward substitution. There are three al-
gorithms for this method: right-looking (see Fig. 2), left-looking, and Crout algorithms
[18]. Given an N ×N matrix, these algorithms require the same O(N3) time but differ
in parallelism and locality of data access.

Among these algorithms, we select the right-looking version for GPUs, which have
much smaller caches than CPUs [2]. The reason why we select this version is that its
reference area at each decomposition step is smaller than the others. Thus, we think that
current GPUs are not suited to algorithms that require larger caches. Note here that we
currently do not consider pivoting because our main focus is the performance study of
GPUs.

3.2 Design Policy

To realize LU decomposition on the GPU, the following three issues must be resolved.

(a) Loop processing: There are dependencies between the outer i loop iterations in Fig.
2. Due to these dependencies, we cannot simply apply single-pass rendering to LU
decomposition. A naive solution is to use a multi-pass rendering approach.

(b) Branch processing: While matrix multiplication applies the same operation to all
matrix elements, LU decomposition uses two different operations, each for com-
puting matrices L and U (lines 4 and 6 in Fig. 2). Therefore, we have to select
the correct operation depending on the location of matrix elements. Thus, branch
processing is required for this selection because FPs are SIMD processors.

(c) Vector processing: As same as for matrix multiplication, we should pack matrix
data into the 4-channel format to enable vectorization.

In the following we describe our implementation approaches that address the issues
mentioned above. We present two approaches for each issue. As shown in Table 1, our
proposed methods are combinations of these approaches. The design policies of these
methods are as follows:

– Method M1 eliminates branch operations from the GPU program, though it requires
more passes;



1: Algorithm TwoPassLUDecomposition { 1: Algorithm OnePassLUDecomposition {
2: for (i = 0; i < N ; i + +) { 2: for (i = 0; i < N ; i + +) {
3: for (j = i + 1; j < N ; j + +) /* rendering */ 3: for (j = i + 1; j < N ; j + +) { /* rendering */
4: Aji = Aji/Aii; /* update L */ 4: for (k = i; k < N ;k + +) {
5: for (j = i + 1; j < N ; j + +) /* rendering */ 5: if (i == k) Aji = Aji/Aii; /* update L */
6: for (k = i + 1; k < N ; k + +) 6: else Ajk− = Aik ∗ Aji/Aii; /* update U */
7: Ajk− = Aik ∗ Aji ; /* update U */ 7: }
8: } 8: }
9: } 9: }

10: }
(a) (b)

Fig. 3. Proposed methods. (a) Two-pass method M1 and (b) single-pass method M2.

– In contrast, method M2 achieves less passes, though it includes branch operations
in the GPU program;

– The remaining methods M3 and M4 exploit vectorization on the basis of methods
M1 and M2, respectively.

3.3 Loop Processing

To consider the issue of loop processing, we first characterize the dependencies between
loop iterations. The dependencies in the right-looking algorithm are as follows:

1. The outer i loop iterations cannot independently be processed;
2. The inner k loop iterations can independently be processed;
3. The inner k loop iterations must be processed after completing the assignment (line

4) in the middle j loop.

Due to the first dependency mentioned above, multi-pass rendering is necessary for
LU decomposition. The key idea here is that, according to characteristic C2, single-
pass rendering can be applied to the inner jk loops if these loops are restructured into
an independent loop. The following reconstruction methods can be considered.

– Loop decomposition (method M1, Fig. 3(a)): In this method, a nested loop for
updating L and U (lines 3–7 in Fig. 2) is decomposed into two loops (lines 3–4
and lines 5–7 in Fig. 3). These decomposed loops cannot be processed at once.
However, each loop can be processed in parallel. Therefore, this method requires
two passes for rendering L and U, as illustrated in Fig. 4(a) and (b).

– Loop fusion (method M2, Fig. 3(b)): In this method, the assignment for updating L
(line 4 in Fig. 2) is moved into the inner k loop (line 5–6 in Fig. 3(b)). This elim-
inates the dependencies so that enables parallel processing of the inner jk loops.
Thus, this method requires only a single pass for updating L and U, as illustrated
in Fig. 4(c). However, it increases the time complexity because the assignment is
moved into the inner loop (line 6 in Fig. 3(b)).

The next issue to be addressed is how data can be iteratively passed through the
pipeline. There are two strategies for this issue.

– Copying strategy using a pixel buffer: FPs write their computation results into a
pixel buffer. After this, the buffer context is copied to a texture for the next suc-
ceeding pass. This strategy requires the copy overhead.



i N

i+1

N

1

N - i 

1
1

(a)

N

i+1

N

i+1

N - i 

1
1

N - i 

(b)

i N

i+1

N

N - i+1

N - i 

1
1

(c)

N

N/4

1
1

R R R R
G G G G

G

B B B B

B B
A A A

A A A A

i +1

4i - 3

N - 4i + 4 

N/4 - i - 1 

i

4i

(d)

Fig. 4. Matrix data rendered at the i-th pass, where 1 ≤ i ≤ N . (a,b) Method M1 renders
matrices L and U in two passes. (c) Method M2 renders them at once. (d) Method M4 integrates
vectorization with M2 by packing matrix data into the 4-channel (RGBA) format.

– Switching strategy using a render texture: This strategy uses two textures, each for
input and output of FPs. At every pass, FPs switch these textures to prevent VRAM
copies. This strategy requires the switch overhead instead of the copy overhead.

3.4 Branch Processing

We now describe how methods M1 and M2 resolve the issue of branch processing.
Branches in method M1 are handled by the CPU. In this method, the entire loop is
mapped to two rendering passes, as we mentioned in Section 3.3. Therefore, the CPU
takes the responsibility for loading the appropriate GPU program with its rendering
area. Thus, branches are naturally handled by the CPU. As a result, the GPU is al-
lowed to concentrate on executing the given program without any control flow. On the
other hand, method M2 requires the GPU to process branches. This can be easily im-
plemented by comparing i and k, the location of matrix elements as shown in Fig. 3(b).

In summary, although CPU implementations do not include branch operations, their
GPU versions may include them due to the SIMD architecture. If branch conditions are
expressed by the location in matrix data, such branches can be eliminated from the GPU
program but with more rendering passes.

3.5 Vector Processing

As same as for matrix multiplication [3, 7], we also apply vectorization to our methods
M1 and M2 in order to reduce the execution time. Fig. 4(d) illustrates how the matrix
data are mapped to the texture format. In this method, an N/4 × N texture represents
an N ×N matrix, enabling applying vector operations to the data on four rows and one
column. Note here that we cannot apply them in other directions, for example, to the
data on one row and four columns, because there are dependencies between different
columns (the outer i loop iterations).

Applying vectorization then raises another issue to be addressed. The issue is that, as
shown in Fig. 4(d), the appropriate channel must be selected in order to perform correct



Table 2. Specification of experimental environments.

GPU nVIDIA GeForceFX 5900Ultra nVIDIA QuadroFX 3400
Core clock 450MHz 350MHz

Texture fill-rate 3.6Gpixels/s 5.6Gpixels/s
VRAM capacity 128MB 256MB

VRAM bandwidth 27.2GB/s 28.8GB/s
Texture cache capacity Undisclosed Undisclosed

Texture cache bandwidth 11.4GB/s 15.6GB/s
Graphics bus AGP8X PCI Express

CPU Pentium 4 2.6GHz Pentium 4 2.8GHz
OS Red Hat Linux 9 Windows XP

rendering for each column. For example, at the top-left corner of rendering area, we can
see that all of the RGBA channels must be rendered for i = 4, 8, . . ., whereas only the
GBA channels must be rendered for i = 1, 5, . . ..

This issue is the same branch issue addressed in Section 3.4, because its branch
condition can be expressed by the location in matrix data. Therefore, we solve it in the
same manner. That is, we implement four GPU programs, each renders the GBA, BA,
A, and RGBA channels, respectively, and then switch them in a cyclic manner.

4 Performance Study

We now show performance studies in order to analyze the performance behavior of the
GPU. We study its behavior from the following three viewpoints: design guidelines for
implementation issues (a)–(c); efficiency in terms of cache bandwidth; and numerical
error.

Table 2 shows the specification of our two machines used for the study. We have
implemented the four methods using the C++ language, the OpenGL library, and the
Cg language [19]. Note here that render-to-texture functionality is not yet available on
Linux systems. Therefore, we used only the copying strategy for the Linux system.

Fig. 5 shows the measured performance for different matrix sizes N . We can see that
the Quadro card yields the best performance of 1.6 GFLOPS for N = 1024 by using
method M3 with the switching strategy. On the other hand, the GeForce card reaches
1.2 GFLOPS for N = 1024 by using method M3 with the copying strategy.

In this figure, we can also see that methods M2 and M4 on Quadro provide relatively
higher performance than those on GeForce. This indicates that the newer generation of
Quadro reduces the branch overhead on FPs, as compared to GeForce, because these
methods differ from methods M1 and M3 in the use of branch operations.

We next investigate the breakdown of execution time to present design guidelines
for implementation issues (a)–(c). Table 3 shows the breakdown measured on Quadro.

– (a) On loop processing. The switching strategy prevents copies in the VRAM, so
that spends no time T for the VRAM copy, as shown in Table 3. However, instead
of this overhead, the switch overhead is observed in the CPU time C. For example,
method M2 increases time C from 95 ms to 128 ms. However, this switch overhead



0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048
N: Matrix size

M
F

L
O

P
S

M1 w/ copy M2 w/ copy

M3 w/ copy M4 w/ copy

(a)

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048
N: Matrix size

M
F

L
O

P
S

M1 w/ copy M2 w/ copy

M3 w/ copy M4 w/ copy

(b)

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048
N: Matrix size

M
F

L
O

P
S

M1 w/ switch M2 w/ switch

M3 w/ switch M4 w/ switch

(c)

Fig. 5. Measured performance for different matrix sizes. (a) GeForce card with the copying strat-
egy. Quadro card (b) with the copying strategy and (c) with the switching strategy.

is small enough to the entire time A. This is also true for methods M3 and M4,
which require more switches due to vectorization. Therefore, in most cases, the
switching strategy seems better than the copying strategy. One concern is portability
because Linux systems currently support only the copying strategy.

– (b) On branch processing. As compared to method M1, method M2 increases the
GPU time G as matrix size N increases. We can see this increase also in its vector-
ization version M4. This increase is due to the branch overhead occurred on FPs.
Thus, for larger matrices, branch operations should be processed by the CPU in
order to obtain higher performance. In contrast, for smaller matrices, method M1
provides higher performance than method M2. This opposite result is due to the
switch overhead mentioned above. That is, though method M1 eliminates branch
operations from the GPU program, it requires an additional overhead for switching
GPU programs. This overhead results in longer time C, increasing the entire time A
especially for smaller N . Thus, there is a tradeoff relation between the GPU branch
and the CPU branch. The tradeoff point is determined by the computational amount



Table 3. Breakdown of measured time on Quadro. A, G, C, and T represent the entire time, the
GPU calculation time, the CPU calculation time, and the VRAM copy time, respectively.

M1 w/ copying (ms) M2 w/ copying (ms) M3 w/ copying (ms) M4 w/ copying (ms)
N

A A A AG C T G C T G C T G C T
32 9 6 2 1 7 6 1 1 39 12 26 1 51 1 48 1
64 13 8 3 2 10 7 2 1 55 15 38 3 64 3 56 5

128 26 14 6 6 19 12 4 3 86 20 60 6 94 6 82 6
256 79 41 11 26 55 36 6 13 160 36 108 15 160 17 126 16
512 438 250 24 164 335 240 13 82 365 102 201 62 360 84 214 63

1024 3291 2022 64 1205 2691 2050 37 604 1306 566 391 350 1334 592 391 351
2048 34942 21629 108 13206 30545 23752 95 6698 10079 5875 781 3422 10489 6307 761 3421

M1 w/ switching (ms) M2 w/ switching (ms) M3 w/ switching (ms) M4 w/ switching (ms)
N

A A A AG C T G C T G C T G C T
32 8 5 3 — 6 5 1 — 50 28 21 — 63 43 21 —
64 15 7 8 — 9 6 3 — 69 38 31 — 77 46 32 —

128 26 13 13 — 17 10 7 — 103 42 61 — 114 57 57 —
256 67 38 29 — 49 36 13 — 208 68 140 — 206 69 136 —
512 318 243 75 — 306 264 42 — 418 149 269 — 409 164 245 —

1024 1603 1470 133 — 1756 1690 66 — 1096 596 500 — 1135 650 485 —
2048 11564 11249 315 — 13309 13181 128 — 4477 3483 994 — 5048 4124 924 —

associated with a single pass of rendering. In this experiment, the tradeoff point is
N = 512.

– (c) On vector processing. The timing benefits of vectorization can be observed in
time G. For example, applying vectorization to M1 reduces time G from 11249 ms
to 3483 ms. Thus, the vectorization effect is almost the same value as the vector
length. In addition to this obvious result, vectorization also contributes to the re-
duction of the VRAM copy time T when using the copying strategy. This reduction
comes from the data packing required for vectorization. Actually, time T in M3 is
3422 ms, which is almost 1/4 of time T in M1. Thus, vectorization is essential to
reduce both the GPU time and the VRAM copy time.

We next investigate the efficiency from the viewpoint of cache bandwidth. As Fata-
halian et al. [3] did, we also modified GPU programs such that the programs only access
the matrix data without performing mathematical operations. Then, by measuring the
GPU time, namely the access time, and using the theoretical amount of data accesses
in Table 1, we obtain the throughput of our methods. The best throughput on GeForce
is 8.6GB/s when using method M3 with the copying strategy for N = 1024 and that
of Quadro is 11.4GB/s when using M3 with the switching strategy for N = 2048. Ac-
cording to these results and theoretical bandwidth in Table 2, the efficiency of cache
bandwidth reaches 75% on GeForce and 73% on Quadro. These values are similar to
those of matrix multiplication [3]. Thus, we find that GPUs require higher VRAM cache
bandwidth in order to provide full performance for LU decomposition.

In terms of FLOPS, the efficiency of our methods is estimated as at most 30%. This
efficiency is not competitive against that of CPU implementations. For example, some
CPU implementations [20–22] optimize locality to achieve higher cache utilization, so
that achieve an efficiency of more than 80%. Therefore, more efficient methods are
required to make GPUs a competitive HPC platform,



Table 4. Floating-point errors in unit in last place. Errors on Quadro are measured by Paranoia
[23]. In the IEEE standard [16], the result is rounded to the nearest representable number.

Operation IEEE754 Quadro
Multiplication [−0.5, 0.5] [−0.78125, 0.625]

Division [−0.5, 0.5] [−1.19902, 1.37442]
Subtraction [−0.5, 0.5] [−0.75, 0.75]

Addition [−0.5, 0.5] [−1, 0]

Finally, we investigate computation results in terms of numerical errors. In most
cases, there are differences between the CPU and GPU results. These differences are
due to the floating-point error, as presented in Table 4. As Hillesland et al. [23] observed,
our GPUs also do not establish error bounds compatible with the IEEE standard, though
they have the same floating-point representation. In particular, division has larger error
than the other operations, because it is implemented by a combination of reciprocal
and multiplication. Unfortunately, this division error is critical for LU decomposition,
because it increases and propagates the entire error at each decomposition step.

Furthermore, though recent GPUs deal with single-precision floating-point num-
bers, they do not support double-precision numbers. Thus, errors caused by this limited
precision are not essentially addressed yet.

5 Conclusions

We have presented the design and implementation of LU decomposition on the pro-
grammable GPU. To study the performance behavior of modern GPUs, we have devel-
oped and evaluated some implementation approaches in terms of (a) loop processing,
(b) branch processing, and (c) vector processing.

The experimental results give four important points: (1) for dependent loops, the
switching strategy using a render texture avoids copies in the VRAM, reducing execu-
tion time by 50%; (2) there is a tradeoff relation between the CPU branch and the GPU
branch, and the CPU branch provides higher performance for the decomposition of ma-
trices larger than 512 × 512; (3) the efficiency of floating-point operations is at most
30%, and as Fatahalian et al. state for matrix multiplication, GPUs also require higher
cache bandwidth in order to provide full performance also for LU decomposition; and
(4) GPUs usually provide different decomposition results from those obtained using a
CPU, mainly due to the floating-point division error that increases the numerical error
with the progress of decomposition.

Thus, as same as for matrix multiplication, we find that current GPUs are not so
suited well for LU decomposition. However, as Moreland et al. [11] pointed out, GPUs
are rapidly increasing their performance beyond the Moore’s law [24]. Therefore, we
believe that this architecture will emerge as an attractive HPC platform, at least for
applications where the error is not a critical problem.



References
1. Fernando, R., ed.: GPU Gems: Programming Techniques, Tips and Tricks for Real-Time

Graphics. Addison-Wesley, Reading, MA (2004)
2. Pharr, M., Fernando, R., eds.: GPU Gems 2: Programming Techniques for High-Performance

Graphics and General-Purpose Computation. Addison-Wesley, Reading, MA (2005)
3. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU algo-

rithms for matrix-matrix multiplication. In: Proc. SIGGRAPH/EUROGRAPHICS Workshop
Graphics Hardware (GH’04). (2004) 133–137

4. Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures for general-
purpose computing: A framework and analysis. In: Proc. 35th IEEE/ACM Int’l Symp. Mi-
croarchitecture (MICRO’02). (2002) 306–317

5. Larsen, E.S., McAllister, D.: Fast matrix multiplies using graphics hardware. In: Proc. High
Performance Networking and Computing Conf. (SC2001). (2001)

6. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of software and
the ATLAS project. Parallel Computing 27 (2001) 3–35

7. Hall, J.D., Carr, N.A., Hart, J.C.: Cache and bandwidth aware matrix multiplication on the
GPU. Technical Report UIUCDCS-R-2003-2328, University of Illinois (2003)

8. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical
algorithms. ACM Trans. Graphics 22 (2003) 908–916

9. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: Conjugate
gradients and multigrid. ACM Trans. Graphics 22 (2003) 917–924

10. Moravánszky, A.: Dense Matrix Algebra on the GPU. (2003) http://www.shaderx2.
com/shaderx.PDF.

11. Moreland, K., Angel, E.: The FFT on a GPU. In: Proc. SIGGRAPH/EUROGRAPHICS
Workshop Graphics Hardware (GH’03). (2003) 112–119

12. Fernando, R., Harris, M., Wloka, M., Zeller, C.: Programming graphics hardware. In: EU-
ROGRAPHICS 2004 Tutorial Note. (2004)

13. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. second
edn. Addison-Wesley, Reading, MA (2003)

14. Shreiner, D., Woo, M., Neider, J., Davis, T., eds.: OpenGL Programming Guide. fourth edn.
Addison-Wesley, Reading, MA (2003)

15. Microsoft Corporation: DirectX (2005) http://www.microsoft.com/directx/.
16. Stevenson, D.: A proposed standard for binary floating-point arithmetic. IEEE Computer 14

(1981) 51–62
17. Montrym, J., Moreton, H.: The GeForce 6800. IEEE Micro 25 (2005) 41–51
18. Dongarra, J.J., Duff, I.S., Sorensen, D.C., Vorst, H.V.D., eds.: Solving Linear Systems on

Vector and Shared Memory Computers. SIAM, Philadelphia, PA (1991)
19. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: A system for programming

graphics hardware in a C-like language. ACM Trans. Graphics 22 (2003) 896–897
20. Naruse, A., Sumimoto, S., Kumon, K.: Optimization and evaluation of linpack bench-

mark for Xeon processor. IPSJ Trans. Advanced Computing Systems 45 (2004) 62–70 (In
Japanese).

21. Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplication. Technical
Report CS-TR-02-55, The University of Texas at Austin (2002)

22. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future.
Concurrency and Computation: Practice and Experience 15 (2003) 803–820

23. Hillesland, K.E., Lastra, A.: GPU floating point paranoia. In: Proc. 1st ACM Workshop
General-Purpose Computing on Graphics Processors (GP2’04). (2004) C–8 http://www.
cs.unc.edu/˜ibr/projects/paranoia/.

24. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38 (1965)
114–117


