
Parallel Volume Rendering with Early Ray Termination
for Visualizing Large-Scale Datasets

Manabu Matsui, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

m-matui@ist.osaka-u.ac.jp

Abstract. This paper presents an efficient parallel algorithm for volume render-
ing of large-scale datasets. Our algorithm focuses on an optimization technique,
namely early ray termination (ERT), which aims to reduce the amount of com-
putation by avoiding enumeration of invisible voxels in the visualizing volume.
The novelty of the algorithm is that it incorporates this technique into a distributed
volume rendering system with global reduction of the computational amount. The
algorithm also is capable of statically balancing the processor workloads. The ex-
perimental results show that our algorithm with global ERT further achieves the
maximum reduction of 33% compared to an earlier algorithm with local ERT. As
a result, our load-balanced algorithm reduces the execution time to at least 66%,
not only for dense objects but also for transparent objects.

1 Introduction

Direct volume rendering [1] is a technique for displaying three-dimensional (3-D) vol-
umetric scalar data as a two-dimensional (2-D) image. Typically, the data values in the
volume are made visible by mapping them to color and opacity values, which are then
accumulated to determine the image pixel.

One challenging issue in volume rendering is to realize fast rendering for large-scale
datasets. However, finding a solution to this issue is not easy due to the high time and
space complexities of volume rendering, both represented as O(n3) for an n × n × n
voxel volume. Therefore, fast processors with large memories are necessary to carry
out this compute-intensive rendering with in-core processing.

To address this issue, many acceleration techniques have been proposed in the past.
Levoy [2] proposes two optimization techniques that reduce the time complexity of
volume rendering. The first technique is early ray termination (ERT), which adaptively
terminates accumulating color and opacity values in order to avoid useless ray casting.
The second technique is a hierarchical octree data structure [3], which encodes spatial
coherence in object space in order to skip empty regions of the volume. These tech-
niques reduce the execution time by roughly a factor of between 5 and 11. Nukata et
al. [4] present a cuboid-order rendering algorithm that aims to maximize the cache hit
ratio by dividing the volume into cuboids, which are then rendered successively. This
algorithm enables view-independent fast volume rendering on a single CPU computer.

Another promising approach is parallelization on parallel computers. Hsu [5] pro-
poses the segmented ray casting (SRC) algorithm, which parallelizes volume rendering

on a distributed memory parallel computer. This algorithm distributes the volume by
using a block-block decomposition and carries out data-parallel processing to generate
subimages for each decomposed portion. The subimages are then merged into a final
image by using an image compositing algorithm [6, 7].

Though many earlier projects propose a wide variety of acceleration schemes, data
distributed parallel schemes [5–7] are essential to render large-scale datasets that cause
out-of-core rendering on a single CPU computer. One problem in these schemes is
that the increase of computational amount compared to sequential schemes, where the
amount can easily be reduced by means of ERT. This increase is due to the low affinity
between ERT and data distribution. That is, while data distribution makes processors
independently render the volume data, ERT is based on the visibility of the data, de-
termined in a front-to-back order. Therefore, earlier parallel algorithms independently
apply ERT to each distributed data in order to perform data-parallel processing. This
locally applied ERT, namely local ERT, increases the computational amount compared
to global ERT, because the visibility is locally determined, so that processors render
locally visible but globally invisible voxels. Thus, earlier data distributed schemes are
lacking the capability of global ERT, so that these schemes can suffer in low efficiency
especially for large-scale datasets with many transparent objects.

Gao et al. [8] address this issue by statically computing the visibility of the volume
data. However, their static visibility culling approach requires pre-processing for every
viewing direction, so that its pre-processing stage prevents rapid visualization.

The key contribution of this paper is the development of a parallel algorithm that
dynamically realizes global ERT in a distributed volume rendering system. Our algo-
rithm has the following two advantages.
R1: Reduction of the memory usage per processor by data distribution.
R2: Reduction of the computational amount by global ERT without pre-processing.

To realize R1, our algorithm employs a block-cyclic decomposition that is capable
of statically balancing the processor workloads. To realize R2, the algorithm employs
an efficient mechanism for sharing the visibility information among processors.

The remainder of the paper is organized as follows. Section 2 introduces earlier
algorithms and presents the problem we tackled in this work. Section 3 describes the
details of our algorithm while Section 4 presents some experimental results on a cluster
of 64 PCs. Finally, Section 5 concludes the paper.

2 Volume Rendering

Figure 1(a) shows an overview of the ray casting algorithm [1]. This algorithm produces
an image by casting rays from the viewpoint through the screen into the viewing vol-
ume. The image pixel Is,t on point (s, t) is determined by accumulating color and opac-
ities values of penetrated voxels V1, V2, . . . , Vk: Is,t =

∑k
i=1 α(Vi)c(Vi)

∏i−1
j=0(1 −

α(Vj)), where C(Vi) and α(Vi) are the color and opacity values of the i-th penetrated
voxel Vi, respectively; 0 ≤ α(Vi) ≤ 1; and α(V0) = 0. Computing Is,t for all points
(s, t) on the screen, where 1 ≤ s ≤ ns and 1 ≤ t ≤ nt, generates the final image of
size ns × nt. In the following discussion, let as,t(i) be the accumulated transparency
for voxel Vi, where as,t(i) =

∏i−1
j=0(1 − α(Vj)).

View Point

(s,t)

Screen

Vk Ray

Volume

V1
nn

rs,t

V2

n n

n

st

x
z

y

(a)

x

y
z

Sub-
screen

(b)

x

y
z

Subvolume

(c)

Fig. 1. Ray casting and its parallel schemes. (b) Screen-parallel rendering and (c) object-parallel
rendering parallelize (a) ray casting by exploiting the parallelism in screen space and in object
space, respectively.

Screen

V1 V2 V3 V4 V5 V6 V7 V8 V9

Voxel Invisible voxels

}rs,t

(a)
Screen

V1 V2 V3}

Subvolume

rs,t

}P1

V4 V5 V6

}P2

V7 V8 V9

}P3Processor

Invisible voxels

}

(b)

Fig. 2. Early ray termination (ERT). (a) Global ERT for sequential and screen-parallel rendering,
and (b) local ERT for object-parallel rendering. While global ERT terminates the ray immedi-
ately before invisible voxel V5, local ERT fails to avoid accumulating locally visible but globally
invisible voxels: V5, V7, and V8. Voxels V6 and V9 are invisible locally as well as globally.

ERT reduces the computational amount by avoiding accumulation of color and
opacity values that do not have influence on the final image. That is, ERT avoids enu-
merating voxels Vl, Vl+1, . . . , Vk if as,t(l) = 0.

Earlier parallel schemes can be classified into two groups: screen-parallel and object-
parallel rendering as illustrated in Figure 1.

Screen-parallel rendering exploits the parallelism in screen space. In this scheme,
the screen is divided into p subscreens, where p represents the number of processors,
and tasks associated with each subscreen are assigned to processors. Because each pro-
cessor takes responsibility for the entire of a ray as it does in sequential schemes, ERT
can easily be applied to this scheme, as illustrated in Figure 2(a). Furthermore, by as-
signing the tasks in a cyclic manner, this scheme statically balances the processing
workloads. However, it requires large main memory to provide fast rendering for any
given viewpoint, because every processor need to load the entire volume into mem-
ory. Thus, though screen-parallel rendering is a good scheme for small datasets, which
require no data decomposition, it does not suit for large-scale datasets.

In contrast, object-parallel rendering exploits the parallelism in object space. This
scheme divides the volume into p subvolumes, and then assigns tasks associated with
each subvolume to processors. Parallel rendering of each subvolume generates p dis-
tributed subimages, so that image compositing is required to merge subimages into the
final image. Thus, this scheme allows us to distribute subvolumes to processors, so that

is suitable for large-scale datasets. However, because accumulation tasks of a ray can be
assigned to more than one processor, it is not easy to utilize global ERT in this scheme.

Figure 2(b) shows an example of local ERT in object-parallel rendering. In this
example, voxels from V1 to V4 are visible from the viewpoint while voxels from V5 to V9

are invisible. These voxels are assigned to three processors, so that each processor takes
responsibility for three of the nine voxels. In object-parallel rendering, the reduction
given by ERT is localized in each processor, because processors take account of the
local visibility instead of the global visibility. For example, processor P2 fails to identify
V5 as an invisible voxel, because it accumulates opacity values from its responsible V4 in
order to perform data-parallel processing. Furthermore, although P2 terminates the ray
after V5, its back neighborhood P3 is unaware of this termination, so that accumulates
V7 and V8, according to the local visibility.

3 Data Distributed Algorithm with Early Ray Termination

Our algorithm is based on object-parallel rendering to deal with large-scale datasets.
It integrates the following techniques: (1) Data distribution by a block-cyclic decom-
position; (2) Concurrent processing of volume rendering and image compositing; (3)
Visibility sharing by a master/slave paradigm; (4) Parallel image compositing.

3.1 Data Distribution

Our algorithm distributes the volume data according to a block-cyclic decomposition,
aiming to maximize the parallelism that can be decreased due to global ERT. The fol-
lowing discussion describes why we employ this decomposition.

In order to realize global ERT in object-parallel rendering, processors have to share
the visibility information, namely accumulated transparency. For example, as illustrated
in Figure 2(b), in a case where processors P2 and P3 are responsible for neighborhood
voxels and P2 terminates the ray, P3 can avoid accumulating all of its responsible vox-
els V7, V8, and V9 after it obtains the value of accumulated transparency that P2 has
computed for V6. However, this indicates that casting a ray with global ERT has no par-
allelism in the viewing direction, because P3 has to wait for P2 to complete rendering of
its responsible voxels. Thus, applying global ERT to object-parallel rendering decreases
the entire parallelism in object space due to processor synchronization. Note here that
the parallelism in screen space is remained.

The key idea to address this decreased parallelism is that exploiting parallelism
in vertical planes perpendicular to the viewing direction. That is, we employ (A) a
data decomposition that allows every processor to have equal-sized tasks on any cross
sections of the volume. Such decomposition minimizes the overhead for the processor
synchronization by allowing processors to overlap communication with computation.
For example, processor P3 in Figure 2(b) can perform rendering for other rays during
waiting for P2, because any processor has its responsible tasks on any vertical plane
perpendicular to the viewing direction. Furthermore, this decomposition realizes static
load balancing because tasks on any cross sections are assigned equally to processors.

As the results of the above considerations, our algorithm employs a block-cyclic
decomposition. Note here that a cyclic decomposition is more appropriate than this de-
composition in terms of (A). However, it possibly decreases rendering performance due
to frequent communication among processors, because a task in the cyclic decomposi-
tion corresponds to a voxel, so that communication occurs for each voxel. Therefore, we
use a combination of block and cyclic decompositions in order to have coarse-grained
tasks without losing the nature of load balancing.

In addition to this data distribution technique, our algorithm aims to reduce the time
complexity by encoding empty regions as Levoy does in [2]. We use an adaptive block
decomposition rather than Levoy’s hierarchical octree, because it increases traversing
overheads with the degree of its hierarchy [9]. The adaptive block decomposition ad-
dresses this issue by uniformly space partitioning.

3.2 Concurrent Processing of Volume Rendering and Image Compositing

As mentioned before, ERT aims to efficiently render the volume according to the visibil-
ity. Note here that the visibility in object-parallel rendering is determined by composit-
ing of subimages. Therefore, applying global ERT to object-parallel rendering requires
concurrent processing of volume rendering and image compositing. Furthermore, to
obtain better performance, (B) a rapid read/write access to the visibility information,
namely the accumulated transparency for an arbitrary ray, must be provided.

In order to realize (B), we classify processors into two groups as follows: (1) Ren-
dering Processors (RPs), defined as processors that render subvolumes in order to gener-
ate subimages; (2) Compositing Processors (CPs), defined as processors that composite
subimages and manage accumulated transparency as,t for all rays, where as,t denotes
the accumulated transparency for ray rs,t. Note here that the relation between CPs and
RPs is similar to that between masters and slaves in the master/slave paradigm. The
details of CPs and RPs are presented later.

3.3 Visibility Sharing Mechanism

Figure 3 shows the processing flow of our master/slave based algorithm. Let r, c, and
v be the number of RPs, CPs, and subvolumes, respectively. The processing flows for
RPs and CPs consist of the following phases.

Processing flow for RPs:
1. Data distribution. The volume is divided into at least r subvolumes, which are then

distributed to r RPs in a round-robin manner. Data distribution phase occurs only
at the beginning of the system.

2. Rendering order determination. Each RP determines the rendering order of as-
signed subvolumes by constructing a list of subvolumes, L, in which its responsible
v/r subvolumes are sorted by the distance to the screen in an ascending order. This
ascending order is essential to achieve further reduction by means of ERT. List L
is updated every time the viewpoint moves.

3. Accumulated transparency acquisition. Each RP deletes a subvolume from the head
of L, then obtains accumulated transparencies from CPs, for all rays that penetrate
the subvolume. Let T be a set of accumulated transparencies obtained from CPs.

Rendering Processors

1. Data distribution

4. Subvolume rendering

5. Rendered subimage

 transmission

Subimage d. Subimage compositing

 and accumulated

 transparency updating
No

Yes

Compositing Processors

CPc

b. Message waiting

2. Rendering order

 determination

a. Compositing order

 determination

6. All subvolumes are

 traversed?

e. All finish messages

 are received?

Viewpoint movement

Yes

No

RP1 CP1RP2 RPr CP2 ...

Finish message

b. Message waiting

b. Message waiting

3. Accumulated transparency

 acquisition

c. Accumulated transparency

 transmission

Request

T: A set of accumulated transparencies

...

Fig. 3. Processing flow of proposed algorithm.

4. Subvolume rendering. For all rays rs,t such that as,t ∈ T and as,t > 0, each RP
accumulates the voxels penetrated by rs,t so that generates a subimage. Note here
that the algorithm avoids rendering for all rays rs,t such that as,t ∈ T and as,t = 0,
according to ERT.

5. Rendered subimage transmission. Each RP transmits the rendered subimages to
CPs. Because blank pixels have no influence on the final image, the algorithm trans-
mits only pixels inside the bounding rectangle of the subimages in order to reduce
the amount of communication.

6. Completion check. Phases 3., 4., and 5. are repeated until list L becomes empty.
Empty L indicates that the RP completes performing all assigned tasks for the
current viewpoint, so that it sends a finish message to all CPs.

Processing flow for CPs:
a. Compositing order determination. Each CP determines the compositing order of

subimages by constructing a list of subvolumes, M , in which all v subvolumes are
sorted by the distance to the screen in an ascending order.

b. Message waiting. Each CP waits for incoming messages from RPs. Such messages
contain request messages for accumulated transparency acquisition, data messages
including rendered subimages, and finish messages.

c. Accumulated transparency transmission. Each CP transmits T that RPs require.

I2
I1

I3

(a)

S1 S2

S3 S4

I2
I1

I3

(b)

Fig. 4. Screen-parallel compositing. Dividing the screen into subscreens produces more paral-
lelism of image compositing.

d. Subimage compositing and accumulated transparency updating. Each CP updates T
by compositing its local subimages with received subimages, according to the order
of list M . If keeping this order is impossible due to the lack of the still unrendered
subimages, it stores the received subimages into a local buffer for later compositing.

e. Completion check. Phases b., c. and d. are repeated until receiving finish messages
from all RPs.

3.4 Parallel Processing of Image Compositing

In the master/slave paradigm, the master becomes a performance bottleneck if it is as-
signed many slaves beyond its capacity. Therefore, our algorithm parallelizes the mas-
ter’s tasks by exploiting the parallelism in screen space. That is, as screen-parallel ren-
dering does, it divides the screen into at least c subscreens and assigns them to c CPs.
Let s be the number of subscreens.

In addition to the benefits of acceleration, this screen-parallel compositing increases
the parallelism of image compositing. Figure 4 gives an example of this increased par-
allelism. In this example, subimages I1, I2, and I3 are rendered from neighborhood
subvolumes located in a front-to-back order. As shown in Figure 4(a), compositing I1
and I3 requires rendered I2 if we avoid dividing the screen. In this case, CPs have to
wait for RPs to generate I2 before compositing I1 and I3. In contrast, if the screen is di-
vided into subscreens, rendered I2 is unnecessary to perform compositing in subscreens
S2, S3, and S4. Therefore, compositing in these subscreens can be carried out without
waiting the rendering of I2, so that screen-parallel compositing enables compositing
subimages at shorter intervals. This means that accumulated transparencies are updated
at shorter intervals, which contribute to achieve further reduction by ERT.

Thus, dividing the screen allows us to exploit more parallelism of image composit-
ing. Furthermore, it also contributes to realize (B) because it enables more frequent
updating of accumulated transparencies.

(a) (b) (c)

Fig. 5. Rendering results of volume datasets used in experiments. (a) D1: skull volume of size
512× 512× 448, (b) D2: abdomen volume of size 512× 512× 730, and (c) D3: hydrogen atom
volume of size 512 × 512 × 512. Each volume is rendered on a 512 × 512 pixel screen.

4 Experimental Results

In order to evaluate the performance of our algorithm, we compare it with two earlier al-
gorithms: SRC [5] and SRC with load balancing (SRCLB). We also present a guideline
for obtaining the appropriate values for the four parameters: r, c, v, and s.

The SRC algorithm is an object-parallel algorithm that parallelizes the ray casting
algorithm with a block-block decomposition. On the other hand, the SRCLB algorithm
incorporates a load balancing capability into SRC. To balance processing workloads,
it divides the volume into subvolumes with marginal regions. For every viewpoint, it
adaptively varies the size of responsible regions inside the subvolumes, according to
the execution time measured for the last viewpoint. Therefore, SRCLB requires more
physical memory compared to the remaining two algorithms, which use disjoint decom-
positions. However, it requires no data redistribution during volume rendering. Both the
SRC and SRCLB algorithms use an improved binary-swap compositing (BSC) [7] for
image compositing. Furthermore, ERT is locally applied to them. All the three algo-
rithms use an adaptive block decomposition [9] to skip empty regions in the volume.

We have implemented the three algorithms by using the C++ language and MPICH-
SCore library [10], a fast implementation of the Message Passing Interface (MPI) stan-
dard. We used a Linux cluster of 64 PCs for the experiments. Each node in this cluster
has two Pentium III 1-GHz processors and 2 GB of main memory, and connects to a
Myrinet switch, which provides a link bandwidth of 2 GB/s.

Figure 5 shows images rendered for three employed datasets D1, D2, and D3. In
addition, we also used a large-scale dataset D4, skull-big volume of size 1024×1024×
896, generated by trilinear interpolation of D1. The screen sizes are 512×512 pixel for
D1, D2, and D3, and 1024 × 1024 pixel for D4.

4.1 Performance Comparison to Earlier Algorithms

To measure rendering performance, we rotated the viewpoint around the viewing ob-
jects, so that obtained an average of 24 measured values. Table 1 shows the averaged

Table 1. Measured execution time and number of rendered voxels for proposed, SRC, and SR-
CLB algorithms. On less than eight processors, some execution failed due to the lack of physical
memory. Ns represents the number of voxels rendered by a sequential algorithm with ERT.

D1: skull volume D2: abdomen volume

p
Ns = 3.1 · 106 voxels Ns = 18.2 · 106 voxels

SRC SRCLB Proposed Reduction ratio SRC SRCLB Proposed Reduction ratio
T1 N1 T2 N2 T3 N3 RT RN T1 N1 T2 N2 T3 N3 RT RN

4 2134 6.7 — — 2366 4.4 0.90 1.52 6155 23.7 — — 6497 20.9 0.95 1.13
8 1471 8.3 1185 8.0 1283 6.3 1.15 1.32 3719 25.9 — — 3316 23.8 1.12 1.09

16 1177 9.9 773 10.2 691 6.3 1.70 1.57 2684 27.9 2350 28.0 1761 23.7 1.52 1.18
32 920 11.4 480 12.3 438 6.8 2.10 1.68 1903 29.6 1432 29.9 934 24.7 2.04 1.20
64 682 12.7 302 14.0 279 8.3 2.44 1.53 1334 31.0 859 31.5 541 25.5 2.47 1.22
128 435 15.0 240 12.6 207 11.0 2.10 1.36 780 32.6 536 27.8 373 27.3 2.09 1.19

D3: hydrogen atom volume D4: skull-big volume

p
Ns = 7.6 · 106 voxels Ns is unmeasurable

SRC SRCLB Proposed Reduction ratio SRC SRCLB Proposed Reduction ratio
T1 N1 T2 N2 T3 N3 RT RN T1 N1 T2 N2 T3 N3 RT RN

4 2168 8.1 — — 2759 7.3 0.79 1.11 — — — — — — — —
8 1201 8.3 — — 1725 7.5 0.70 1.11 7146 40.8 — — 5836 26.7 1.22 1.53

16 888 8.3 777 8.3 872 7.6 1.02 1.09 5386 49.2 4736 49.5 3328 31.5 1.62 1.56
32 673 8.3 479 8.4 499 7.8 1.35 1.06 4144 57.2 3172 59.4 2178 36.3 1.90 1.58
64 468 8.4 302 8.6 301 8.1 1.55 1.04 3152 64.8 2365 68.5 1311 41.0 2.40 1.58
128 325 8.5 187 7.5 226 8.2 1.44 1.04 2132 78.8 1640 86.0 927 50.2 2.30 1.57

RT = T1/T3, RN = N1/N3

Table 2. Parameter values employed for p processors. Parameters r, c, v, and s represent the
number of RPs, that of CPs, that of volume divisions, and that of screen divisions, respectively.

D1: skull volume of D2: abdomen volume of D3: hydrogen atom volume D4: skull-big volume of
p size 512 × 512 × 448 size 512 × 512 × 730 of size 512 × 512 × 512 size 1024 × 1024 × 896

r v s r v s r v s r v s
4 3 2 × 2 × 2 23 × 23 3 3 × 3 × 3 24 × 24 3 6 × 6 × 6 24 × 24 — — —
8 7 2 × 2 × 2 22 × 22 7 8 × 8 × 8 24 × 24 7 6 × 6 × 6 18 × 18 7 4 × 4 × 4 24 × 24

16 14 4 × 4 × 4 24 × 24 15 8 × 8 × 8 23 × 23 14 6 × 6 × 6 19 × 19 15 5 × 5 × 5 23 × 23
32 27 7 × 7 × 7 22 × 22 29 10 × 10 × 10 20 × 20 27 8 × 8 × 8 16 × 16 27 7 × 7 × 7 23 × 23
64 55 8 × 8 × 8 18 × 18 59 9 × 9 × 9 16 × 16 50 8 × 8 × 8 10 × 10 55 8 × 8 × 8 24 × 24
128 109 8 × 8 × 8 14 × 14 111 12 × 12 × 12 11 × 11 106 8 × 8 × 8 14 × 14 109 11 × 11 × 11 20 × 20

results. In this table, T1, T2, and T3 represent the averaged execution time for SRC,
SRCLB, and our algorithms, respectively. N1, N2, and N3 also represent the averaged
number of rendered voxels. We measured them by using the best parameter values de-
termined by the guideline presented in the next section (see Table 2). The length for
marginal region of SRCLB is given by 256 voxels, which is the maximum length for
performing in-core rendering on our cluster.

This table indicates that our algorithm is generally faster than SRC, because it shows
RT > 1.0 for all p > 8, where RT is the reduction ratio of the execution time com-
pared to SRC. In particular, on a larger number of processors, our algorithm reduces the
execution time in half for datasets D1, D2, and D4.

In contrast, the reduction ratio is relatively small on a smaller number of processors.
This small improvement can be explained as follows. The first reason is that RPs in our
classification based algorithm is c fewer than that in the remaining two algorithms. This
indicates that processor classification is not suited for systems with smaller p, because
such systems do not have computing resources enough to deal with compute-intensive
rendering. In such small systems, any resource must be dedicated to the performance

bottleneck, namely subvolume rendering, in order to achieve faster acceleration. Actu-
ally, as presented in Table 2, we obtain c = 1 for all p ≤ 8, so that the number of RPs is
insufficient to that of CPs in these situations. The second reason is that tasks associated
with the same ray are assigned to a few processors in the SRC algorithm. This indicates
that on a smaller number of processors, local ERT is sufficient to terminate rays in an
early rendering phase, so that there is no redundant accumulation left for global ERT.

By comparing RT and RN , where RN is the reduction ratio of rendered voxels
compared to SRC, we can see that the reduction of the execution time is more than
that of rendered voxels. In particular, although ERT achieves few reduction for trans-
parent dataset D3, our algorithm reduces its execution time by 33%. This acceleration
is provided by load balancing. As shown in Figure 5(c), the most voxel in dataset D3
is transparent and few opaque voxel is located around the center of the volume. For
such datasets, the SRC algorithm constructs smaller blocks located near the center and
larger blocks located far from the center, because it uses a combination of an adaptive
block decomposition and block-block decomposition. Therefore, processors assigned
with center blocks have relatively larger tasks than others, so that the processor work-
loads become imbalanced. Actually, the average and standard deviation of subvolume
rendering time on 128 processors, μ and σ, respectively, are improved from μ = 91 and
σ = 88 ms in the SRC method to μ = 105 and σ = 34 ms in our algorithm.

Finally, we compare our algorithm to SRCLB by using D1 and its larger version D4.
Our algorithm shows better improvement to SRCLB for D4 rather than for D1. On 128
processors, its reduction ratio to SRCLB is T2/T3 = 1.77 for D4 but 1.16 for D1. This is
due to the lack of physical memory required for marginal regions. That is, although we
maximized the length for marginal regions, it was not enough to balance the workloads
for D4. Thus, compared to our algorithm, SRCLB requires a larger physical memory to
balance the workloads for large-scale datasets.

4.2 Parameter Setup

We now present a guideline for obtaining the appropriate values for the four parame-
ters: r, c, v, and s. Figure 6 shows the execution time averaged over RPs for different
parameter values. We show the results only for skull dataset D1 because we obtained
similar results for others.

We first investigate the influence of r under fixed v and s. Figure 6(a) shows the
breakdown of the execution time on p = 64 for different r. The time for subvolume
rendering decreases as r increases, so that we obtain the shortest time when r = 55.
This decrease is due to the reduction of computational amount per processor, because
each RP is responsible for v/r subvolumes, which decreases with the increase of r. On
the other hand, when r > 55, the execution time turns to increase because the commu-
nication time for accumulated transparency acquisition increases with r. This increase
is due to the lack of CPs, which makes RPs wait in the accumulated transparency ac-
quisition phase. Thus, there is a tradeoff between r and c.

The appropriate values for r and c are determined by finding a balancing point as
follows. Given a volume of size n × n × n and a screen of n × n, the time complex-
ities of volume rendering and image compositing are O(n3) and O(n2), respectively.

Rendered subimage transmission Subvolume rendering

Accumulated transparency acquisition Rendering order determination

r: Number of rendering processors
1 7 14 21 28 35 42 49 56 63

0
500

1000
1500
2000
2500
3000
3500
4000

4500

6500
12500

13000

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

(a)

4 8 12 16 20
v: Number of volume divisions

0

200

400

600

800

1000

1200

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

4400

4200

13 33333

v>r

(b)

0

200

400

600

800

4 8 12 16 20 24
s: Number of screen divisions

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

12500
16500

12 2 2 2 2 2 2

s>c

8000

1000

1200
1400
1600

(c)

Fig. 6. Execution time measured on RPs for different parameter values using skull dataset D1.
Results for (a) v = 8× 8× 8 and s = 18× 18, (b) r = 55 and s = 18× 18, and (c) r = 55 and
v = 8 × 8 × 8.

Therefore, if we assume that the appropriate values for r and c balance the workloads
of them, r and c are given by:

r/c = (w1 + w2)/w2 · n3/n2, (1)
p = r + c, (2)

where (w1 + w2)/w2 is a granularity of rendering to compositing, w1 is the time for
trilinear interpolation to determine a scalar value of a voxel, and w2 is the time for
accumulating color and opacity values of a image pixel.

Next, we investigate v (Figure 6(b)). The increase of v means the downsize of
task granularity. In addition, the block-cyclic decomposition becomes similar to the
cyclic decomposition with the increase of v. Therefore, increasing v leads to better
load balancing, which minimizes the execution time for subvolume rendering. How-
ever, fine-grained tasks cause frequent communication between RPs and CPs, because
they shorten the intervals of accumulated transparency acquisition and updating. Al-
though shorter intervals contribute to achieve further reduction by ERT, but CPs can
suffer from network contention when the intervals are too short beyond the network
capacity. Therefore, the execution time turns to increase in such a situation. Thus, there
is a tradeoff between load balancing and communication frequency.

As same as for r and c, the appropriate value for v also is determined by finding a
balancing point. In Table 2, we can see that the best value of v differs among datasets.
Therefore, the appropriate value must be determined for each p and dataset by finding
the saturated value of at least r. For example, by increasing v from r, we can identify
the saturated value when the execution time turns from decrease to increase.

Finally, we investigate s (Figure 6(c)). When s < c, the parallelism of image com-
positing increases with s, so that increasing s reduces the execution time. However,
there is no significant difference when s ≥ c. Furthermore, Table 2 shows similar val-
ues of s for datasets D1, D2, and D3. Therefore, the appropriate value for s depends

on each p and n. The value can be determined by finding the saturation point with
increasing s from c.

In summary, Equations (1) and (2) determine the appropriate values for r and c,
which dominate the execution time. The appropriate value for v can be determined by
using the tradeoff between load balancing and communication time. The value is given
by finding the saturated value of at least r for each p and dataset. The last parameter
s has relatively small significance on the execution time. The appropriate value can be
determined by finding the saturated value of at least c for each p and n.

5 Conclusions

We have presented an efficient parallel volume rendering algorithm that is capable of
rendering large-scale datasets on a distributed rendering system. The novelty of the al-
gorithm is a combination of global ERT and data distribution with static load balancing.
To realize this, the algorithm uses the master/slave paradigm where slave processors
carry out the rendering tasks to accumulate color and opacity values of voxels while
master processors perform compositing tasks and manage the accumulated values to
share them among processors. The experimental results show that the reduction given
by ERT increases with the size of datasets, and the improvement produced by static
load balancing increases with the number of processors.

References

1. Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Applica-
tions 8 (1988) 29–37

2. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graphics 9 (1990) 245–261
3. Yau, M.M., Srihari, S.N.: A hierarchical data structure for multidimensional digital images.

Comm. ACM 26 (1983) 504–515
4. Nukata, M., Konishi, M., Goshima, M., Nakashima, Y., Tomita, S.: A volume rendering

algorithm for maximum spatial locality of reference. IPSJ Trans. Advanced Computing
Systems 44 (2003) 137–146 (In Japanese).

5. Hsu, W.M.: Segmented ray casting for data parallel volume rendering. In: Proc. 1st Parallel
Rendering Symp. (PRS’93). (1993) 7–14

6. Ma, K.L., Painter, J.S., Hansen, C.D., Krogh, M.F.: Parallel volume rendering using binary-
swap compositing. IEEE Computer Graphics and Applications 14 (1994) 59–68

7. Takeuchi, A., Ino, F., Hagihara, K.: An improved binary-swap compositing for sort-last
parallel rendering on distributed memory multiprocessors. Parallel Computing 29 (2003)
1745–1762

8. Gao, J., Huang, J., Shen, H.W., Kohl, J.A.: Visibility culling using plenoptic opacity func-
tions for large volume visualization. In: Proc. IEEE VIS’03. (2003) 341–348

9. Lee, C.H., Park, K.H.: Fast volume rendering using adaptive block subdivision. In: Proc. 5th
Pacific Conf. Computer Graphics and Applications (PG’97). (1997) 148–158

10. O’Carroll, F., Tezuka, H., Hori, A., Ishikawa, Y.: The design and implementation of zero
copy MPI using commodity hardware with a high performance network. In: Proc. ACM
ICS’98. (1998) 243–250

