
PerWiz: A What-If Prediction Tool for
Tuning Message Passing Programs�

Fumihiko Ino, Yuki Kanbe, Masao Okita, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{ino,y-kanbe,m-okita,hagihara}@ist.osaka-u.ac.jp

Abstract. This paper presents PerWiz, a performance prediction tool for improv-
ing the performance of message passing programs. PerWiz focuses on locating
where a significant improvement can be achieved. To locate this, PerWiz per-
forms a post-mortem analysis based on a realistic parallel computational model,
LogGPS, so that predicts what performance will be achieved if the programs are
modified according to typical tuning techniques, such as load balancing for a bet-
ter workload distribution and message scheduling for a shorter waiting time. We
also show two case studies where PerWiz played an important role in improving
the performance of regular applications. Our results indicate that PerWiz is useful
for application developers to assess the potential reduction in execution time that
will be derived from program modification.

1 Introduction

Message passing paradigm [1] is a widely employed programming paradigm for dis-
tributed memory architectures such as clusters and Grids. This paradigm enables writ-
ing high performance parallel applications on these architectures. However, it assumes
implicit parallelism coded by application developers. Therefore, developers have to take
responsibility for detecting the bottleneck code of sequential applications and for de-
termining which code should be parallelized, according to the performance analysis of
the applications. Thus, performance tuning is an important process for developing high
performance parallel applications.

One issue for tuning parallel programs is an enormous amount of performance
data, which makes this process difficult and time-consuming task. Earlier research ad-
dresses this issue by visualizing the performance data collected during program exe-
cution [2–5]. Although this visual approach enables intuitive understanding of program
behavior, it has a scalability problem. It is not easy for developers to detect performance
bottlenecks from the complicated visualizations rendered for large-scale applications.

Therefore, some research projects address the issue by automating program instru-
mentation [6], performance problem search [7–10], and performance prediction [11].
These automatic approaches are attractive for developers who want to locate perfor-
mance bottlenecks and adapt applications to other computing environments. However,
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these projects raise another question that must be answered: how much improvement in
execution time will be derived with what kind of tuning techniques?

Hollingsworth [12] gives a preliminary answer to this question by developing a run-
time algorithm to compute a variant of critical path (CP), called CP zeroing. CP zeroing
provides an upper bound on the reduction in the length of CP possible by tuning a spe-
cific procedure. Because CP zeroing directs developers to procedures expected to pro-
vide a significant improvement, it is useful to prevent spending time tuning procedures
that will not give an improvement. A similar analysis [13] is also useful to balance the
workload in a coarse-grain manner. This analysis predicts the potential improvement in
execution time when changing the assignment of processes to processors.

Thus, many tools focus on helping performance tuning. However, to the best of
our knowledge, there is no tool that gives an answer to the further question: what per-
formance will be achieved if various tuning techniques are applied to the programs?
This what-if prediction support is important for developers because it enables them to
prevent wasted effort with no improvement. Note here that CP zeroing predicts the im-
provement if a procedure is removed, so that considers no tuning technique during pre-
diction. Thus, addressing what-if prediction with various tuning techniques is lacking,
for instance, what-if predictions for fine-grain load balancing and message scheduling,
aiming to obtain a better workload distribution and a shorter waiting time, respectively.

In this paper, we present Performance Wizard (PerWiz), a what-if prediction tool
for tuning Message Passing Interface (MPI) programs [1]. PerWiz reveals hidden bot-
tleneck messages in a program by predicting the program’s execution time if zeroing the
waiting time of a message. Furthermore, by specifying the program’s parallel region,
where developers intend to parallelize, PerWiz presents a lower bound on the execu-
tion time if balancing the workload in a parallel region. These what-if predictions are
based on a post-mortem analysis using LogGPS [14], a parallel computational model
that models the computing environment by several parameters. Predicted results are
presented in a timeline view rendered by logviewer [4], a widespread visualization tool.

The paper is organized as follows. We begin in Section 2 by abstracting the execu-
tion of message passing programs with LogGPS. In Section 3, we describe a method for
assessing the potential improvement of message passing programs. Section 4 describes
PerWiz, which implements the method. Section 5 shows two case studies and Section
6 discusses related work. Finally, Section 7 concludes this paper.

2 Modeling Message Passing Programs

2.1 Definition of Parallel Region

Let A denote a message passing program. In order to analyze the workload distribution
of A, the program code that developers intend to execute in parallel must be identified.
We call this code a parallel region, R, composed of a set of blocks in A. That is, any
block b such that b ∈ R can be executed in parallel (or even in sequential, against
developer’s intension). Note here that any b ∈ R can include a routine call for message
passing. Figure 1 shows two examples of a parallel region specified by two directives:
PRGN BEGIN and PRGN END. Developers aim to parallelize the entire N iterations
in Figure 1(a) and each of N iterations in Figure 1(b).
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1: PRGN BEGIN; 1: for (k=0; k<N; k++) {
2: for (k=0; k<N; k++) { 2: PRGN BEGIN;
3: MPI Sendrecv(); 3: MPI Sendrecv();
4: Calculation; 4: Calculation;
5: } 5: PRGN END;
6: PRGN END; 6: }

(a) (b)

Fig. 1. Parallel regions specified (a) for the entire N iterations and (b) for each of N iterations.

In the following discussion, we call a logical step that corresponds to an execution
of a parallel region as a parallel step.

2.2 Modeling Program Execution

An execution of A can be represented as a directed acyclic graph (DAG), G = (V , E),
where V and E denote a set of vertexes and that of edges, respectively. While a ver-
tex corresponds to an event occurred during an execution, an edge corresponds to a
happened-before relation [15], →, a precedence relationship defined between events.

An event occurs when a process executes a sequence of statements in A. Events can
be classified into two groups: communication and calculation events. A communication
event corresponds to an execution of a communication routine, from its call to return.
On the other hand, a calculation event corresponds to an execution of other statements
processed between two successive communication events. Communication events can
be more classified into send and receive events according to whether their corresponding
routine sends or receives a message.

An execution time for A can be represented as the CP length of weighted G, which
has a weight associated with each vertex and edge. One method for weighting G is to
use a realistic parallel computational model such as the LogP [16] family of models
[14, 17]. LogGPS [14] is an extension of LogGP [17] and captures both synchronous
and asynchronous messages by using the following seven parameters (see Figure 2).

– L: an upper bound on the latency, incurred in sending a message from its source
processor to its target processor.

– o: the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; During this time the processor cannot
perform other operations.

– g: the gap between messages, defined as the minimum time interval between con-
secutive message transmissions or consecutive message receptions at a processor.

– G: the Gap per byte for long messages, defined as the time per byte for a long
message.

– P : the number of processor/memory modules.
– S: the threshold for message length, above which messages are sent in a syn-

chronous mode.
– s: the threshold for message length, above which messages are sent in multiple

packets.
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Fig. 2. Asynchronous and synchronous messages under LogGPS. An arrow from the sender to
the receiver represents a 1-byte message.

In a precise sense, o should be distinguished for the send and receive overheads
and also be represented by a linear function on message length. However, because the
following explanation requires no precise notation, this paper uses a simple notation, o.

As illustrated in Figure 2, the execution times for send and receive events include
waiting time twait, in addition to sending and receiving times, tsend and trecv, respec-
tively. Here, the waiting time for a receive event is defined as the receiver’s time from
the call of a receive routine to the arrival of the message. The waiting time for a send
event, which appears only in a synchronous mode, is also defined as the sender’s time
from the arrival of the send request REQ to the call of a matching receive routine.

In this paper, waiting time zeroing for communication event e means obtaining
twait = 0 for e. This is achieved by making a hypothesis in which e’s matching routine
is scheduled so that called for twait earlier than present.

3 Potential Improvement Assessment

This section describes a method for assessing the potential improvement of message
passing programs, which perform communication and calculation.

3.1 Assessing Communication Bottlenecks

Tuning methods for communication bottlenecks can be classified into two groups.

T1: Message scheduling, aiming to minimize twait.
T2: Message reduction, aiming to minimize tsend and trecv.

CP zeroing analysis is effective for T2 because applying this analysis to communication
routines shows an upper bound on the potential improvement by assuming the amount
of messages be zero byte. Therefore, this paper tackles on T1.

In general, focusing on a message with maximum twait does not always result in a
significant improvement. That is, even if the message is scheduled to obtain twait = 0,
the program will not reduce its execution time unless the length of CP is shortened. By
contrast, scheduling a message with small twait can trigger domino effect, which can
significantly improve the overall performance by reducing the waiting time of its subse-
quent messages, like as domino toppling. Thus, to evaluate the potential improvement
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Inputs: (1) G = (V, E), a direct acyclic graph; (2) P , a set of processes.
Outputs: (1) D, a set of domino paths; (2) T , Predicted execution time if zeroing waiting time.
1: Algorithm ComputingDominoPath(G, P , D, T );
2: begin
3: T := ∞;
4: foreach process p ∈ P do begin
5: Dp := φ; // Dp: A domino path terminated at ep,i

6: Select event ep,i ∈ V such that ¬∃ep,j ∈ V (ep,i → ep,j);
7: w(Dp) := ComputingForEachProcs(G, ep,i, ∞);
8: if (T > w(Dp)) then T := w(Dp); // Select the minimum execution time
9: end

10: D := {Dp | w(Dp) = T};
11: end
12: Function ComputingForEachProcs(G, ep,i, Tp);
13: begin
14: foreach event id j ∈ {1, 2, · · · , i} do begin
15: Tp,j := WaitingTimeZeroingSimulation(ep,j ); // See Section 4
16: end
17: Select event id m ∈ {1, 2, · · · , i} such that ∀j ∈ {1, 2, · · · , i} (Tp,j ≥ Tp,m);
18: if ((ep,m = ep,i) || (Tp,m > Tp)) then
19: return Tp;
20: else begin
21: Select event eq,j ∈ V such that (p �= q) ∧ ((eq,j → ep,m) ∨ (ep,m → eq,j));
22: Add events ep,m and eq,j to Dp;
23: return ComputingForEachProcs(G, eq,j , Tp,m); // Recursive call
24: end
25: end

Fig. 3. Algorithm for computing the domino paths of a DAG.

in terms of T1, our method searches a message that triggers the domino effect rather
than a message with maximum twait.

We now propose an algorithm for locating a communication event that triggers the
domino effect, aiming to achieve a significant improvement with little effort. Figure
3 describes our algorithm, which requires a DAG and a set of processes, G and P ,
respectively, then returns a set of domino paths, D, with the minimum of predicted
execution time, T . To locate the event, our algorithm recursively backtracks happened-
before relations → in G, and repeatedly predicts the execution time with a hypothesis
in which a specific communication event u ∈ V is scheduled to have twait = 0. As a
result, it computes a domino path (DP), a set of events that participate in the domino
effect. As presented later in Section 4, our prediction is based on LogGPS, which clearly
defines twait for MPI routines so that improves the prediction accuracy for synchronous
messages, compared to LogP and LogGP [14].

Let ep,i denote the i-th event occurred on process p. The relation backtracking is
performed in three steps as follows. First, the algorithm starts with event ep,i last oc-
curred on process p (line 6), then searches event number m, where 1 ≤ m ≤ i, such that
ep,m accompanies the minimum execution time Tp,m if assuming twait = 0 for ep,m
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Fig. 4. Computing process for a domino path. (a) Given a DAG, the algorithm (b) recursively
backtracks happened-before relations so that (c) locates a domino path.

(line 14–17). Here, the algorithm in Figure 3 is simplified to obtain such m in unique,
however, our actual algorithm performs round robin prediction on every m with min-
imum Tp,m. In the next step, it terminates this backtracking (1) if current computed
DP Dp already includes ep,m or (2) if current predicted time Tp,m exceeds to Tp, the
minimum execution time predicted before (line 18). Otherwise, the algorithm searches
ep,m’s matching event eq,j (line 21), then add ep,m and eq,j to Dp (line 22). Finally,
applying this backtracking recursively to eq,j (line 23) computes a DP terminated on p,
and performing this for all processes p ∈ P (line 4) returns D and T (lines 8 and 10).

Figure 4 illustrates an example of computing process for a DP. Our algorithm back-
tracks er,1 → eq,3, then eq,1 → ep,1, so that points out a DP containing ep,1, eq,1, eq,3

and er,1. The waiting times of eq,1 and er,1 can be reduced by calling ep,1’s correspond-
ing send routine earlier in order to cause the occurrence of ep,1 forward.

3.2 Assessing Calculation Bottlenecks

As we did for communication bottlenecks, tuning methods for calculation bottlenecks
can also be classified into two groups.

T3: Load balancing, aiming to obtain a better workload distribution.
T4: Time complexity reduction, aiming to minimize calculation time.

Like for T2, CP zeroing is also effective for T4 because it predicts an upper bound on
the potential improvement by assuming the execution time of a specific procedure be
zero second. Therefore, we focus on T3.

The concept of parallel region is useful to evaluate the potential improvement that
will be derived by T3, because it enables predicting the execution time if the workload
is balanced among processors. For example, the most imbalanced parallel step can be
detected by computing the standard deviation σ(tk) of execution time tk, where tk
represents the time that a process requires in the k-th parallel step. However, as we
mentioned for T1, focusing on a parallel step with maximum σ(tk) does not always
derive a significant improvement. Therefore, by using LogGPS simulation, our method
searches a parallel step that derives the minimum execution time if its workload is
assumed to be balanced (σ(tk) = 0).
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Recall here that parallel regions can include routine calls for message passing.
Therefore, the above method for calculation bottlenecks can also be applied to com-
munication bottlenecks in order to predict the execution time if the amount of messages
is assumed to be balanced in a parallel region.

4 PerWiz: A What-If Prediction Tool

PerWiz has the following three functions.

– F1: Function for modification choice search.
To assist developers in achieving a significant improvement with little effort, Per-
Wiz presents modification choices sorted by their significances. For communication
bottlenecks, it shows a DP computed by the algorithm presented in Section 3.1. For
calculation bottlenecks, as mentioned in Section 3.2, it locates a parallel step that
reduces the program’s execution time by load balancing.

– F2: Function for what-if prediction.
This function is a basis for function F1 and predicts the program’s execution time
for the following what-if questions: what performance will be derived if making a
hypothesis in which
• the waiting time or the execution time of a specific event becomes zero second;
• all processes pass the same amount of messages or require the same execution

time in a specific parallel step.
The predicted results for the above questions can be visualized by logviewer, as
shown in Figure 5(c). In addition, developers can give PerWiz a combination of the
questions, allowing them to consider various tuning techniques.

– F3: Function for lower bound prediction.
In order to assist developers in changing the parallel algorithm employed in the tar-
get program, this function computes a lower bound on execution time for each par-
allel region. Since different algorithms produce different DAGs, it predicts a lower
bound by simply summing up the breakdown of execution time. That is, F3 needs
only the breakdown of calculation, sending, receiving, and waiting times while F2
requires a DAG in order to simulate a program execution with proper precedence.
Developers can give and combine the following what-if questions: what perfor-
mance will be derived if making a hypothesis in which
• the waiting time or the execution time spent for a specific parallel region be-

comes zero second;
• all processes pass the same amount of messages or require the same execution

time in a specific parallel region.

To tune MPI programs with PerWiz, developers first must specify parallel regions
in their code, as presented in Figure 1. After this instrumentation, compiling the in-
strumented code generates an object file and linking it with an instrumentation library
generates an executable binary file. By executing the binary file in parallel, PerWiz
generates a trace file, L, logged in ALOG format [18]. The instrumentation library for
ALOG is widely distributed with MPICH [19], a basis of many MPI implementations.
Finally, giving a what-if question and L generates a predicted result in a text file and
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Fig. 5. Predicted results in timeline views rendered by logviewer. (a) The original behavior on 16
processes, (b) its computed domino path, and (c) a predicted behavior if the workload in paral-
lel steps is assumed to be balanced. A colored box represents an execution of MPI Sendrecv().
Orange and red boxes correspond to an execution in odd and even parallel steps, respectively.

a reconstructed ALOG file, L′. Note here that giving L′ to PerWiz enables iterative
prediction without additional program execution.

We now present how PerWiz reconstructs predicted trace file L′ from recorded trace
file L. In order to realize accurate performance predictions, PerWiz utilizes the mea-
sured execution time in L as much as possible. For calculation events, PerWiz applies
the measured time in L to the predicted time in L′. For communication events, PerWiz
employs two approaches according to whether the event passes a synchronous message
or an asynchronous message:

– For asynchronous communication events, PerWiz uses the LogGPS execution time,
computed for every length of messages [14];

– For synchronous communication events, PerWiz estimates both sending time tsend

and receiving time trecv from measured L, then utilizes them for L′. For example,
given send event u, it first decomposes its measured time tall recorded in L into
twait = max(tv − tu − (o + L), 0) and tsend = tall − twait (see Figure 2), where
tu and tv denote the occurrence time of u and that of a matching receive event v
recorded in L, respectively, and o + L represents the estimated time defined from
the occurrence of v to the arrival of REQ. PerWiz then regards t′all = max(t′v −
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1: PRGN BEGIN; 1: for (k=1; k ≤ log P; k++) {
2: for (φ=1; φ ≤ N; φ++) { 2: PRGN BEGIN;
3: if (MPI Comm rank() ∈ group g(φ)) { 3: Local calculation for image splitting;
4: Local gradient calculation; 4: MPI Sendrecv();
5: Communication within g(φ) by MPI Send(), 5: Local calculation for image compositing;

MPI Recv(), and MPI Sendrecv(); 6: PRGN END;
6: } 7: }
7: }
8: PRGN END;

(a) (b)

Fig. 6. Pseudo code of (a) image registration and (b) image compositing applications.

t′u − (o + L), 0) + tsend as the predicted execution time for u, where t′u and t′v
denote the predicted occurrence time of u and that of v in L′, respectively. The
same approach determines the predicted execution time for receive events.

5 Case Studies

This section shows two case studies in order to demonstrate the usefulness of PerWiz.
We used a cluster of 64 Pentium III 1-GHz PCs interconnected by a Myrinet switch [20],
yielding a full-duplex bandwidth of 2 Gb/s. We also used the MPICH-SCore library
[21], a fast MPI implementation.

The values of LogGPS parameters were L = 9.11 μs, o = 2.15 μs, and S =
16 383 bytes, measured using the method presented in [14]. Note here that the remaining
LogGPS parameters had no influence on the predicted results because the applications
employed for the studies passed only synchronous (long) messages, which require only
L and o for prediction, as presented in Section 4.

5.1 Case 1: Performance Improvement by Message Scheduling

We applied PerWiz to an image registration application [22], which aligns a pair of
three-dimensional (3-D) images. We improved its performance by reducing waiting
time. Figure 6(a) shows its pseudo code with its parallel region. In this application,
every process holds a portion of the images and computes the gradient of a function
that represents the similarity between the images. This gradient has to be calculated for
each point φ, placed dynamically in the images. In addition, the gradient calculation at
φ requires the neighborhood pixels of φ. To parallelize this application, developers dy-
namically organized processes into groups, aiming at concurrent processing of gradient
calculations. All processes that hold the neighborhood pixels of φ compose group g(φ),
and all processes in g(φ) participate in the calculation at φ.

We first detected the hotspot of this application by using gprof [23], a profiling tool.
The hotspot was the gradient calculation repeated for 14 times. Therefore, we decided
to instrument only one of the 14 repetitions. We executed the instrumented code on 16
dedicated processors, each with one process, so that generated 720 KB of a trace file
that contains 4634 communication events. The execution time was 23.8 s including a
run-time overhead of 0.1 s for trace generation.
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Table 1. Lower bound prediction for image registration and image compositing applications by
PerWiz (function F3). Q1, Q2, and Q3 denote questions if zeroing waiting time, balancing the
workload and the amount of messages in its parallel region, respectively.

What-if
Predicted execution time

What-if
Predicted execution time

question
Registration Compositing

question
Registration Compositing

T1 (s) T2 (ms) T1 (s) T2 (ms)
— 23.8 30.6 Q1 ∧ Q2 5.3 16.5
Q1 8.2 22.3 Q1 ∧ Q3 8.0 16.8
Q2 23.4 34.9 Q2 ∧ Q3 23.6 38.2
Q3 21.4 25.7 Q1 ∧ Q2 ∧ Q3 5.0 11.0

Table 2. Predicted and measured times for image registration application after l-th modification,
where 0 ≤ l ≤ 7. Code modification is based on the events located by the domino path approach
and the longest waiting time approach.

Domino path approach by PerWiz Longest waiting time approach
l Execution time (s) Waiting time (s) Execution time (s) Waiting time (s)

TP,l: Predicted TM,l: Measured twait,l TM,l: Measured twait,l

0 — 23.8 — 23.8 —
1 21.6 21.8 11.8 23.9 12.5
2 19.5 19.5 10.7 22.6 14.7
3 18.2 18.2 7.5 22.6 11.9
4 15.9 15.8 5.8 21.5 13.5
5 14.8 14.8 3.4 21.5 11.4
6 14.4 14.4 0.4 20.7 12.3
7 13.7 13.7 0.7 20.8 10.7

Table 1 shows the execution time, T1, predicted by function F3, the lower bound
prediction. We obtained T1 < 10 s if Q1 is specified: what performance will be derived
if zeroing the waiting time in the parallel region? Therefore, reducing waiting time is
necessary to improve the performance of this application.

In order to clarify the usefulness of PerWiz, we now compare two approaches for
reducing waiting time in MPI programs: (1) the DP approach, which locates an event
that triggers the domino effect computed by PerWiz and (2) the longest waiting time
(LWT) approach, which locates an event with LWT. Because the waiting time in this
application was due to the processing order of points (loops at line 2), we repeatedly
modified the code to obtain an appropriate order that reduces the waiting time of the
event located by each approach. To compute a DP, PerWiz took approximately 10 s on
a Pentium III 1-GHz system.

Table 2 compares predicted time TP,l and measured time TM,l after the l-th modifi-
cation, where 0 ≤ l ≤ 7. PerWiz enables developers to reduce TM,l from 23.8 to 13.7
s after the seventh modification. By contrast, the LWT approach results in 20.8 s. Thus,
our DP approach allows developers to efficiently improve this application and to derive
a performance improvement of 42% while the LWT approach gives that of 13%.

Furthermore, our DP approach successfully gives a performance improvement for
every modification, whereas the LWT approach fails to reduce execution time TM,l at
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l = 1, 3, 5, and 7. This is due to the LWT approach, which lacks the guarantee on
the reduction of the length of CP. By contrast, our approach guarantees it by LogGPS
simulation. For example, the LWT approach reduces twait,l, where l = 1, 3, 5, and 7,
however, this reduction increases the waiting times of the succeeding events, resulting
in a similar total performance.

The domino effect appears at twait,l, the waiting time of the event located at the l-th
modification. In our approach, twait,l decreases as l increases. This is due to the domino
effect, which reduces the waiting time of many events that compose the computed DP.
Actually, at every modification, our DP approach reduces the total amount of the waiting
time by approximately 25 s, whereas the LWT approach reduces it by 0–10 s. Thus,
our DP approach directs developers to events with a shorter waiting time but with a
promised improvement, and the LWT approach directs them to events with a longer
waiting time but with an uncertain improvement. Therefore, PerWiz enables developers
to efficiently improve the application’s performance.

5.2 Case 2: Performance Improvement by Load Balancing

We also applied PerWiz to an image compositing application [24] for 3-D volume ren-
dering systems (see Figure 6(b)). We improved its performance by load balancing. On
P processes, it merges P locally rendered images into the final image in log P stages.
At each stage, all processes are paired up, and the two processes involved in a com-
positing split the image plane into two pieces. Each process then takes responsibility
for one of the two pieces and exchanges the other piece. Repeating this splitting and
exchanging with different pairs of processes for log P times produces the final image
in a distributed manner. Since every process takes responsibility for 1/2k image at the
k-th stage, where 1 ≤ k ≤ log P , developers expected a good workload distribution.
However, in practice, it had a load imbalance issue due to transparent pixels that can
omit calculation for compositing. The trace file generated on 64 dedicated processors
was 100 KB in size, containing 384 communication events.

The lower bound on execution time, T2, presented in Table 1 indicates that its exe-
cution time can be reduced from 30.6 to 11.0 ms by applying all of the following three
tuning techniques: reducing waiting time, and balancing the workload and the amount
of messages in its parallel region. However, the most effective technique is unclear be-
cause T2 decreases by approximately 5 s when adding these techniques successively to
the question given to PerWiz (22.3, 16.5, and 11.0 ms).

In this application, because every process synchronizes at every stage, we first in-
tended to reduce its waiting time by balancing the workload. We then used function F2
to predict the execution time, T3, possible by balancing the workload in the k-th par-
allel step, where 1 ≤ k ≤ 6. Table 3 shows the results, which give two hints toward a
performance improvement: (1) load balancing in all parallel steps reduces T3 from 30.6
to 11.0 ms; and (2) this load balancing is effective especially for parallel step S2.

First, we discuss on hint (1). The minimum time of T3 = 11.0 ms equals to that
of T2 = 11.0 ms predicted for Q1 ∧ Q2 ∧ Q3, as presented in Table 1. This indicates
that, as we intended before, load balancing in all parallel steps successfully reduces the
waiting time in this application, because it yields the same performance possible by
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Table 3. What-if prediction for image compositing program by PerWiz (function F2). Q4(k)
represents a question if balancing the workload in parallel step Sk, where 1 ≤ k ≤ 6.

What-if question
Predicted time

What-if question
Predicted time

T3 (ms) T3 (ms)
— 30.6 Q4(4) 27.2
Q4(1) 29.1 Q4(5) 29.6
Q4(2) 21.6 Q4(6) 29.9
Q4(3) 26.4 Q4(1) ∧ · · · ∧ Q4(6) 11.0

zeroing the waiting time of every communication event. Thus, the most efficient modi-
fication was to balance the workload in all parallel steps. To realize this, we developed
the BSLBR method [24], which splits images into interleaved pieces rather than block
pieces. BSLBR achieved an execution time of 14.8 ms.

For hint (2), we examined the sparsity of images at each stage. We then found that
exploiting the sparsity of images was inadequate immediately after the first composit-
ing step, so that it augmented load imbalance in S2. To address this issue, we developed
the BSLMBR method [24], which exploits more sparsity of images with a low over-
head. BSLMBR reached a minimum execution time of 11.8 ms, which is close to the
minimum predicted time, T3 = 11.0 ms.

6 Related Work

Paradyn [7] performs an automatic run-time analysis for searching performance bottle-
necks based on thresholds and a set of hypotheses structured in a hierarchy. For exam-
ple, it locates a synchronization bottleneck if waiting time is greater than 20% of the
program’s execution time. Aksum [8] is also based on a similar approach that is capable
of multi-experiment performance analysis for different problems and machine sizes in
order to automate performance diagnosis of parallel and distributed programs. Because
these diagnoses are based on dynamic instrumentation technology, sophisticated search
strategies for reducing run-time overhead [9] and for quickly finding bottlenecks [10]
are developed recently.

SCALEA [25] is a performance instrumentation, measurement, and analysis system
that explains the performance behavior of each program by computing a variety of
performance metrics regarding data movement, synchronization, control of parallelism,
additional computation, loss of parallelism, and unidentified overheads.

Prophesy [26] gives insight into how system features impact application perfor-
mance. It provides a performance data repository that enables the automatic generation
of performance models. To develop these models, it uses coupling parameter [27], a
metric that quantifies the interaction between kernels that compose an application.

TAU performance system [28] aims to enable online trace analysis in order to over-
come the inherent scalability limitations of post-mortem analysis. Although its prelim-
inary testbed is presented in [28], scalability performance tests are left as future work.

Dimemas [29] is a simulator for analyzing the influence of sharing a multiprocessor
system among several parallel applications. It enables studying the influence of different
scheduling policies in the global system performance.
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In contrast to these previous works, the novelty of PerWiz is the assessment of per-
formance bottlenecks to guide developers to bottlenecks with a promised improvement.

7 Conclusion

We have presented a performance prediction tool named PerWiz, which focuses on as-
sessing the potential improvement of message passing programs. PerWiz directs devel-
opers to where a significant improvement can be achieved, as a result of applying typical
tuning techniques. To enable this, PerWiz performs a post-mortem analysis based on a
parallel computational model, then locates domino paths and parallel steps in the pro-
gram. Furthermore, PerWiz predicts the execution time under specific assumptions such
as if zeroing wait time, balancing the workload and the amount of messages.

In case studies where PerWiz played a key role in tuning MPI programs, we con-
firmed that focusing on a domino path effectively improves the performance of MPI
programs. Therefore, we believe that PerWiz is useful for developers to investigate the
reduction in execution time that will be derived from a modification.

Future work includes incorporating dynamic instrumentation technology into Per-
Wiz to reduce instrumentation overhead for large-scale applications. Furthermore, run-
time optimization techniques are required to tune irregular applications that dynami-
cally vary program behavior according to run-time situations.
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