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Abstract

Sort-last parallel rendering is a good rendering scheme on distributed memory multipro-
cessors. This paper presents an improvement on the binary-swap (BS) method, which is
an efficient image compositing algorithm for sort-last parallel rendering. Our compositing
method uses three acceleration techniques, compared to the original BS method: (1) the in-
terleaved splitting, (2) multiple bounding rectangle, and (3) run-length encoding. Through
the use of the three techniques, our method balances the compositing workload among
processors, exploits more sparsity of the image, and reduces the cost of communication.

We also show some experimental results on a PC cluster. The results show that our
method completes the image compositing faster than the original BS method, and its speedup
to the original increases with the number of processors.
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1 Introduction

Volume rendering [5,6] is an intuitive technique for understanding large amounts
of three-dimensional (3-D) data sets, or volumes. For example, the rendering tech-
nique helps us visualize scientific volumes created by numerical computations and
clinical volumes created by X-ray computed tomography (CT) scans. Furthermore,
some high speed commercial renderers such as Maya [1] and RenderMan [19] are
also useful to create outstanding visual effects for films. However, to render these
enlarging volumes at interactive rates, we require adequate computing resources
such as fast processors and large memories. One good solution to meet these re-
quirements is to parallelize sequential volume rendering algorithms on distributed
memory multiprocessors.

Using distributed memory multiprocessors, many researchers have developed par-
allel volume rendering methods [4,8,9,12,17,20,21,25]. Most of existing methods
are sort-last methods [15], which partition the entire volume into subvolumes and
distribute them to processors. In addition to this data distribution phase, sort-last
methods consist of two phases: the rendering phase and the compositing phase.
Each processor produces a subimage by rendering its assigned subvolume, then
composites the final image by merging the produced subimages into one. Thus,
all processors operate independently until the compositing phase. Therefore, by
exploiting the data parallelism in the compute-intensive rendering phase, sort-last
methods provide high performance rendering on distributed memory multiproces-
sors.

For the rendering phase, we can use efficient algorithms such as segmented ray
casting (SRC) [8] and shear-warp factorization [9]. The SRC method, which pro-
duces realistic images without warping, suits for medical diagnosis. However, for
the compositing phase, we still have to develop more efficient compositing algo-
rithms, because the image compositing becomes the performance bottleneck of
sort-last methods as the number of processors increases.

The binary-swap (BS) method [12] is an efficient and simple compositing algo-
rithm, which repeatedly splits the subimages and distributes them to the appro-
priate processors. Many sort-last systems [14,16,20,24,25] have used this method,
because it provides an efficient compositing with less implementation effort com-
pared with others: projection [4], direct send [8,17], and parallel pipeline [10].

In [25], Yang et al. have incorporated run-length encoding into the BS method.
Their method, the binary-swap with bounding rectangle and run-length encoding
(BSBRC) method, has showed better performance than the original BS method on
the IBM SP2. They also challenged to ensure static load-balancing by splitting the
image plane into interleaved regions. However, this method, the binary-swap with
static load-balancing and run-length encoding (BSLC) method, failed to outper-
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form the BSBRC method.

In this paper, to develop an efficient compositing method, we present an improve-
ment on the BS method, the binary-swap with static load-balancing, multiple bound-
ing rectangle, and run-length encoding (BSLMBRC) method. We have incorpo-
rated three acceleration techniques into the original BS method. First, to ensure
static load-balancing, we split the image plane into interleaved regions and as-
sign them to processors like the BSLC method, while the original does into two-
dimensional (2-D) block regions. Second, to avoid more redundant computations,
we restrict the image compositing to specific regions by the multiple bounding
rectangle, while the original does by the single bounding rectangle. Last, to re-
duce communication costs, we transmit run-length encoded pixels like the BSBRC
method, while the original optionally does LZRW1 [22] encoded pixels.

The rest of this paper is organized as follows. Section 2 briefly describes sort-last
parallel volume rendering. Section 3 describes the details of the BSLMBRC method
and presents a theoretical analysis on its performance. Section 4 presents some
experimental results on a PC cluster [3] of 64 nodes. At last, Section 5 concludes
this paper.

2 Sort-last parallel rendering

Sort-last parallel rendering [15], which Molnar et al. have classified, is a broad
class of parallel rendering methods. They have regarded the rendering problem as
a problem of sorting objects to the screen and have classified parallel rendering
methods, based on where the sort from object space to screen space occurs.

Fig. 1 shows an overview of sort-last parallel volume rendering. In the following,
let n be the number of processors. The entire volume is partitioned into subvolumes
and the partitioned subvolumes are distributed to each processor. In the rendering
phase, each processor independently produces a subimage by rendering its own
subvolume. Thus, n-subimages have been produced at the end of the rendering
phase. In the subsequent compositing phase, the processors produce the final image
by merging n-subimages in a back-to-front [23] or front-to-back [11] order.

Thus, sort-last methods aim at exploiting the data parallelism in the compute-
intensive rendering phase, and this gives us high performance rendering on dis-
tributed memory multiprocessors. However, since processors have to communicate
each other to produce the final image, the image compositing becomes a perfor-
mance bottleneck of the volume rendering with the increase of n. Therefore, to
develop an efficient sort-last method that gives a linear speedup with n, we also
have to develop an efficient compositing method that provides high performance
compositing with the increase of n.
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Fig. 1. Sort-last parallel volume rendering.

3 An improvement on binary-swap compositing

This section describes the details of our BSLMBRC method and presents a theoret-
ical analysis on its performance. We first describe the BS method, the base of our
BSLMBRC.

3.1 Binary-Swap Compositing

The binary-swap (BS) method [12] merges all produced subimages into the fi-
nal image as shown in Fig. 2(a). The key idea is that splitting the subimages and
swapping them between processors exploits more parallelism. At each compositing
stage, all processors are paired up, and the two processors involved in a compositing
split the image plane into two pieces. Each processor then takes responsibility for
one of the two pieces and swaps the other piece. This method requires exactly logn
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Table 1
Existing compositing methods based on BS method. RLE means run-length encoding.
Original BS method uses LZRW1 encoding as an option.

Method
Load Bounding Data

balancing rectangle compression

BS [12] — Single — / LZRW1

BSBRC [25] — Single RLE

BSLC [25] Static — RLE

BSLMBRC Static Multiple RLE

compositing stages, and every processor participates in all compositing stages.

Notice that only non-blank pixels affect the composited results. Thus, the BS method
exploits the sparsity of the subimage by using a bounding rectangle, which encloses
the entire non-blank region of the subimage. Each processor composites and trans-
mits inside the bounding rectangle.

Given an A pixel subimage, determining its bounding rectangle takes O(A) time. On
the other hand, given the coordinates of two bounding rectangles, merging the two
takes O(1) time. Therefore, once we have determined all bounding rectangles at the
initial compositing stage, it takes only O(1) time to update the bounding rectangle
of the composited subimage at each following stage. Thus, the bounding rectangle
is an efficient technique to reduce redundant computations and communications.

3.2 Proposed BSLMBRC compositing

Our BSLMBRC method has the same rule of subimage exchange as the BS method.
Table 1 summarizes the differences among the BS based methods.

The acceleration techniques incorporated into our BSLMBRC method are the fol-
lowing three.

(1) Interleaved splitting: To ensure static load-balancing, we split the image plane
into interleaved regions and assign them alternately to processors, while the orig-
inal does into 2-D block regions (see Fig. 2). This technique enables processors
to exchange almost equal number of pixels.

(2) Multiple bounding rectangle: To avoid more redundant computations, we re-
strict the image compositing to specific regions by the multiple bounding rect-
angle, while the original does by the single bounding rectangle. So, processors
composites and transmits only inside the multiple bounding rectangle, which
allows the processors to cover all non-blank pixels with less blank pixels by ap-
plying bounding rectangles to each scanline (see Fig. 3).
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Fig. 2. Compositing processes of BS method (upside) and BSLMBRC method (downside)
using four processors. BSLMBRC uses interleaved splitting while BS uses block splitting.

(3) Run-length encoding: To reduce communication costs, we transmit run-length
encoded pixels, while the original optionally does LZRW1 encoded pixels. Note
that processors have to encode only the pixels inside the multiple bounding rect-
angle to compress the sequence of blank pixels.

In the following, we introduce why our method adopts the above three acceleration
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Fig. 3. Single bounding rectangle (center) and multiple bounding rectangle (right).

techniques.

First, the original BS method accelerates the image compositing by using the bound-
ing rectangle, but the bounding rectangle brings another issue: the load imbalance.
The load imbalance in the BS method can take place in all pairs of processors. In
Fig. 2(a), processor P1 and P2 exchange their splitted subimages, and P2 sends
many pixels compared to P1. This load imbalance is caused by the block splitting
of the BS method, in which the number of pixels that a processor sends ranges from
0 to B pixels, where B represents the number of pixels in the bounding rectangle
that the processor has. Therefore, to assign half the bounding rectangle to each pro-
cessor, we split the image plane into interleaved regions as Yang et al. does in [25].
By using the interleaved splitting, the processor sends approximately B/2 pixels.

Notice that such load imbalances take place especially at an early stage, because
subimages at the stage are relatively sparse to the splitted regions. Furthermore,
the BS method varies the pairs of processors at every stage. Therefore, once a load
imbalance takes place at an early stage, the load-imbalanced pair causes significant
delay at the following stages, and the delay can spread among all processors. Fig.
4(a) shows this situation. In Fig. 4(a), we see that some horizontal bars adjoin their
succeeding bars. That is, at those compositing stages, the processors that show such
bars perform few calculations and thereby can cause load imbalances between their
partners. We also see that the spread of the delay make the adjoined bars relatively
long compared to others.

Second, the original BS method avoids redundant computations by using the bound-
ing rectangle. On the other hand, as mentioned in Section 1, the BSLC method,
which ensures static load-balancing but unuses the bounding rectangle, failed to
outperform the BSBRC method, which uses the bounding rectangle. Therefore, we
think that exploiting more sparsity of the subimages is necessary for high perfor-
mance compositing. To do this, we use the multiple bounding rectangle for our
method. That is, we apply a bounding rectangle to each scanline as shown in Fig.
3(c).

Given an A pixel square subimage, the multiple bounding rectangle takes the same
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Fig. 4. Timeline views of BS method (left) and BSLMBRC (right) method using 32 proces-
sors. Time is along horizontal axis and processors are along vertical axis. Each horizontal
bar corresponds to a communication occurred in a processor.

O(A) time as the single bounding rectangle to determine itself. The multiple bound-
ing rectangle also takes O(

√
A) time to update itself, while the single bounding

rectangle takes O(1) time. However, this additional cost is relatively low compared
to the total cost of the image compositing (see Section 4.3).

Last, to reduce communication costs, we compress the scanline data by run-length
encoding. Although the multiple bounding rectangle can exclude many blank pix-
els, the blank pixels inside the rectangle remain. For example, a sparse image like
a doughnut has many blank pixels inside its circle. To exclude such blank pixels
at low cost, we compress only blank pixels and leave non-blank pixels as Yang et
al. does in [25].

Run-length encoding and bounding rectangle are similar techniques in terms of
excluding blank pixels, but run-length encoding takes more time. At every com-
positing stage, it takes O(A) time to encode a composited subimage. Therefore,
applying the bounding rectangle before run-length encoding is necessary for effi-
cient compositing. We discuss this cost-benefit tradeoff later in Section 4.3.

3.3 Theoretical analysis of BSLMBRC

In this section, we estimate the compositing time of the BSLMBRC method, Tall.
To do this, we first estimate the total transmitted pixels per processor, Nall, then
define Tall as a function of Nall.

Let p be the number of non-blank pixels in the final image. Let Pk be the number of
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non-blank pixels per processor at the end of k-th stage, where k ≥ 0. In a block data
distribution, each processor has approximately p ·n−2/3 non-blank pixels at the end
of the rendering phase [17], so that P0 = p ·n−2/3.

Let Rk also be the account rate of non-blank pixels in the splitted subimage at the
end of k-th stage, where k ≥ 0. That is, if the splitted subimage at the k-th stage is
filled with blank pixels, we have Rk = 0, and if it is filled with non-blank pixels,
Rk = 1. At the end of k-th stage, where k ≥ 0, each processor is assigned a splitted
image of p/2k pixels, which has Pk non-blank pixels. Therefore,

Rk =
2k

p
·Pk, (1)

where k ≥ 0.

At the exchange of k-th stage, where k ≥ 1, each processor receive Pk−1/2 non-
blank pixels. Each processor then merges the received pixels with its remained
subimage, which has Pk−1/2 non-blank pixels. At this merge, each of the received
non-blank pixels is merged with blank pixels at the rate of 1−Rk−1. That is, (1−
Rk−1) ·Pk−1/2 blank pixels turns into non-blank after this merge. Therefore, Pk =
Pk−1/2 + (1−Rk−1) ·Pk−1/2 = Pk−1 · (1−Rk−1/2). Using Eq. (1), we obtain:

Pk =




p ·n− 2
3 , for k = 0

Pk−1 ·
(

1− 2k−2

p
·Pk−1

)
, for k ≥ 1

. (2)

Summing up half the number of pixels over all stage:

Nall =
logn

∑
k=1

Pk−1

2
. (3)

In Section 4.4, we show a verification of Nall.

We next define Tall using Nall. The compositing time of BSLMBRC, Tall, consists
of five major costs as follows (see also Fig. 5).

• Tcpy: the copy cost, defined as the time to copy pixels into send buffer with run-
length encoding.

• Tsyn: the synchronization cost, defined as the time to synchronize with the partner
processor before an exchange.

• Tcom: the communication cost, defined as the time to exchange pixels between a
pair of processors through the network.

• Tcal: the calculation cost, defined as the time to composite the received pixels
with run-length decoding.
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Fig. 5. Breakdown of compositing time on four processors.

• Tfin: the finalization cost, defined as the time to wait for the completion of the
latest processor after the final compositing stage.

Three of the above five costs, Tcpy, Tcom and Tcal, are proportional to Nall. The rest
of costs, Tsyn and Tfin, depend on the effect of the load-balancing. If we have perfect
load-balancing, Tsyn and Tfin can be approximated as zero.

Summarizing the above discussions, we have

Tall = Tcpy +Tsyn +Tcom +Tcal +Tfin

=(tcpy + tcom + tcal) ·Nall +Tsyn +Tfin, (4)

where tcpy, tcom and tcal are the execution time per pixel to copy, exchange, and
composite, respectively.

4 Experimental results

In this section, we present some experimental results using the BS based methods
listed in Table 1. The results contain (1) a comparison of the compositing times
using clinical volumes, (2) a discussion on the effect of the three acceleration tech-
niques presented in Section 3.2, and (3) a verification of the theoretical analysis
presented in Section 3.3.

4.1 Experimental environments

Fig. 6 shows the hierarchical organization of hardware/software configuration. We
used a Linux PC cluster [3] of 64 nodes for the experiments. Each node in the clus-
ter has two Pentium III 1GHz processors and connects to a Myrinet-2000 switch
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Distributed memory multiprocessor:

  PC cluster of 64 nodes (or Cray T3D, IBM SP-2, Intel Paragon)

  CPU: Dual Pentium III 1GHz    Network: Myrinet-2000 2Gb/s

Hardware

OS: Red Hat Linux 7 (or Windows, Solaris, FreeBSD)OS

MPI: MPICH-SCore 5

         (or MPICH, LAM)
Library

Application
Image compositing:

 BS/BSBRC/BSLC/BSLMBRC

Local rendering:

 Segmented ray casting (SRC)

Language C++: Intel C++ Compiler 5 (or GNU C++, Visual C++) 

Fig. 6. Hierarchical organization of hardware/software configuration.

[2], which provides bandwidth of 2Gb/s.

We have implemented all the BS based methods listed in Table 1 by using Intel
C++ compiler and MPICH-SCore library [18], which is a fast implementation of
the Message Passing Interface (MPI) standard [13]. We also have implemented the
SRC method [8] for the rendering phase. Thus, our implementation runs on many
platforms where MPI and C++ programs are available.

Fig. 7 shows the rendered images from volume data sets used in our experiments.
The belly volume V D1 and the skull volume V D2 are created by an X-ray CT scan,
and the cube volume V D3 is created by hand.

4.2 Measured compositing time

We measured the compositing times of the BS based methods: BS (without LZRW1
encoding), BSBRC, BSLC, and BSLMBRC. To measure the compositing times, we
rotated the view point around the volume objects and rendered them on the screen
at 512×512 pixel.

Fig. 8 shows the averaged results. In all averaged results, the BSLMBRC method is
the fastest among the four methods. But for some view points when n = 2, the BS
and BSBRC methods, which use the block splitting, show better performance than
the BSLMBRC method, which uses the interleaved splitting. Since the volume is
partitioned into blocks, the block splitting can avoid any communications for some
view points. For example, when n = 2, given a view point that locates on the divid-
ing plane of the volume, processors can composite without any communications.

For the volumes VD1 and V D2, the BS method is the slowest and the BSBRC and
BSLC methods show similar performance. The speedup of BSLMBRC to the other
methods increases with n, ranges from 1.0 to 1.3, when n = 2, and from 1.5 to 2.5,
when n = 64. Thus, with the increase of n, the BSLMBRC method provides better
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(a) V D1: Belly 512×512×730 voxel

(b) VD2: Skull 512×512×448 voxel

(c) VD3: Cube 256×256×256 voxel

Fig. 7. Rendered images from volume data sets used in our experiments. Screen size is
512×512 pixel.
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Fig. 8. Measured compositing times on a PC cluster with Myrinet-2000 network.
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performance than the other BS based methods.

For the volume VD3, which is small compared to the screen and sparse compared to
the other volumes, the BSLC method is relatively slow. The BSLC method unuses
the bounding rectangle, while the other methods use. Therefore, at every composit-
ing stage, the BSLC method scans all pixels in the splitted subimage, while the
others scan only inside the bounding rectangle. The total time to scan all pixels in
the splitted subimage is proportional to A ·∑logn

k=1
1/2k = A ·(1−1/n). As a result, the

BSLC method takes long time to exclude the blank pixels, so that its compositing
time increases with n.

In Fig. 8(c), the BS method also increases its compositing time with n. For the small
volume, the block splitting can easily decrease the parallel efficiency compared to
the interleaved splitting. For example, when we select a view point such that the
rendered cube locates in one block region on the screen, only a few processors
participate the compositing in the block splitting. For such view points, increasing
the number of processors only increases the number of the compositing stages.

Summarizing the above results, both the bounding rectangle and interleaved split-
ting techniques are necessary to achieve high performance compositing for the
small and sparse volumes like the volume VD3. We think that the achieved perfor-
mance is high enough for our target application, or volume rendering for clinical
3-D CT images, which requires realtime manipulation of images such as rotation,
shift, and magnification at 10 frames per second (fps). That is, the compositing
time below 40 ms is short enough for 10 fps, since the rendering algorithm can
take the remaining 60 ms for producing subimages. On the other hand, in Fig. 8(a),
all methods except the BSLMBRC method fail to yield a video quality rate of 30
fps, since the methods take more than 33 ms for compositing. Thus, reducing the
compositing time is necessary to increase the upper limit of the frame rate. We also
think that the BSLMBRC method, which achieves high performance compositing
for sparse volumes, is suitable for clinical applications, because such applications
are frequently required to produce sparse images such as the blood vessels in CT
images.

4.3 Discussion on BS acceleration techniques

We now discuss on the effect of the three acceleration techniques. Table 2 shows the
breakdowns of the compositing times measured for the volume V D1, where n = 64.
To illustrate the effect in clear, we measured additional three methods, BSLBR,
BSLBRC, and BSLMBR, which are the subsets of the BSLMBRC method.

First, the effect of static load-balancing appears at Tsyn and Tfin in Table 2. The
load-imbalanced methods, BS and BSBRC, show Tsyn > 15 and Tfin > 5, while the
other load-balanced methods show Tsyn < 10 and Tfin < 2. That is, the interleaved
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Table 2
Breakdowns of compositing times measured for volume V D1 using 64 nodes. RLE means
run-length encoding.

Method
Load Bounding Data Measured times (ms)

balancing rectangle compression Tcpy Tsyn Tcom Tcal Tfin Tall

BS [12] — Single — 3.0 18.2 9.7 7.1 6.4 46.8

BSBRC [25] — Single RLE 4.4 16.4 5.7 3.8 5.1 38.0

BSLC [25] Static — RLE 14.4 5.9 5.7 3.4 1.0 32.5

BSLBR Static Single — 2.7 9.0 9.7 6.8 1.8 32.6

BSLBRC Static Single RLE 4.3 6.5 5.6 3.4 1.1 23.5

BSLMBR Static Multiple — 2.8 6.4 6.2 3.9 1.2 23.1

BSLMBRC Static Multiple RLE 3.1 6.2 5.6 3.6 1.1 22.0

splitting balances the compositing workload among processors and decreases the
synchronization and finalization costs. By comparing the BS and BSLBR methods,
we see that the interleaved splitting reduces the compositing time by 30% (from
46.8 to 32.6 ms).

Second, the effect of the multiple bounding rectangle appears at all costs except
Tcpy. By comparing the BSLBR and BSLMBR methods, we see that the multiple
bounding rectangle decreases all costs except Tcpy but slightly increases Tcpy. That
is, the multiple bounding rectangle avoids more redundant computations and com-
munications compared to the single but requires a little time to copy the pixels
into send buffer by each scanline. The compositing time is reduced by further 29%
(from 32.6 to 23.1 ms).

Notice that the update cost of the multiple bounding rectangle, included in Tcal,
is unrevealed in this data set. The update cost is relatively low compared to the
compositing cost, so that the decrease of the compositing cost hides the increase of
the update cost.

Last, the effect of data compression appears at all costs except Tcpy. Run-length
encoding decreases all costs except Tcpy but increases Tcpy like the multiple bound-
ing rectangle. By comparing the BSLMBR and BSLMBRC methods, we see that
run-length encoding reduces the compositing time by 5% (from 23.1 to 22.0 ms).

As mentioned in Section 3.2, we have a cost-benefit tradeoff between the multiple
bounding rectangle and run-length encoding. Therefore, the effect of the multiple
bounding rectangle appears in an opposite situation between BSLBRC and BSLM-
BRC. The multiple bounding rectangle decreases Tcpy. That is, in the BSLBRC
method, adding run-length encoding to BSLBR decreases all costs except Tcpy

but increases Tcpy from 2.7 to 4.3 ms, and in the BSLMBRC, adding the multi-
ple bounding rectangle to BSLBRC decreases Tcpy from 4.3 to 3.1 ms by excluding
more blank pixels before applying run-length encoding. Thus, the multiple bound-
ing rectangle is also useful to reduce Tcpy, when we use data compression technique.
Without the bounding rectangle, Tcpy is significantly increased due to the data com-
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Fig. 9. Maximum size of transmitted data among nodes and its standard deviation.

pression technique as shown in the BSLC method (14.4 ms).

However, more high-rate compression algorithms such as LZRW1 [22] and zlib [7]
are effective on low-speed network. For example, when we use zlib compression
library with the BSLMBRC method, the compositing time for the volume VD1
decreases by 18% compared to run-length encoding. Although Tcpy increases to
380 ms, the number of transmitted pixels decreases by 30%, thereby shows better
performance.

Fig. 9 shows the maximum size of transmitted data among nodes and its standard
deviation. At the first compositing stage, the BS and BSBRC methods, which unuse
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Fig. 10. Examples of subimage at first compositing stage.

the interleaved splitting, exchange twice data compared to the others and show
imbalanced loads. At the second compositing stage, the BSLBR method, which
shows relatively good load-balancing at the first stage, exchange twice data like the
BS and BSBRC methods. The BSLBR method unuses the data compression, so that
many blank pixels inside the bounding rectangle are transmitted. Therefore, once
a bounding rectangle enlarges as shown in Fig. 3, the BSLBR method exchanges
many blank pixels at the following stages. Notice that BSLMBR avoid this situation
by using the multiple bounding rectangle.

Fig. 10 shows two cases that can occur at the first compositing stage. One is the
best case for the multiple bounding rectangle and the other is the worst. In the best
case (Fig. 10(a)), the multiple bounding rectangle exploits almost all sparsity of the
image, so that run-length encoding exploits a little. In the worst case (Fig. 10(b)),
as same as the single bounding rectangle, the multiple bounding rectangle fails to
exclude the blank pixels located between the non-blank regions. In this case, run-
length encoding exploits further.

Summarizing the above discussions, all the three acceleration techniques are nec-
essary for high performance compositing on high-speed network, and applying the
multiple bounding rectangle before run-length encoding is necessary. Data com-
pression is necessary especially for low-speed network such as Fast Ethernet.

4.4 Verification of theoretical analysis

In this section, we verify our theoretical analysis presented in Section 3.3. To do
this, we compare our analysis with the measured results and also with Ma’s analysis
[12].

Fig. 11 shows two comparisons between the theoretical size and the measured size
of transmitted data. We used two values for P0, one is p · n−2/3 in Eq. (2) and the
other is the measured value. The theoretical number is calculated by Nall ·16 bytes
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Fig. 11. Theoretical and Measured size of transmitted data for volume V D1. Ma’s analysis
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(12 bytes for RGB colors and 4 bytes for opacity).

When we use the measured value for P0, the error of our analysis is at most 5%.
On the other hand, the gap between Ma’s analysis and the measured size spreads
as n increases and results in the maximum error of 38%. The difference between
the analyses exists in how it reduces the total number of non-blank pixels at each
compositing stage. In Ma’s analysis, for any value of n, non-blank pixels reduce
in half over three compositing stages. For large value of n, this analysis fails to
decrease the reduction rate of non-blank pixels, which we have modeled as 1−
Rk−1 in Eq. (2). Therefore, Ma’s analysis estimates smaller number of pixels as n
increases.

5 Conclusions

We presented an image compositing method, which accelerates the BS method
on distributed memory multiprocessors. Our BSLMBRC method has incorporated
three acceleration techniques into the original BS method. The interleaved splitting
ensures static load-balancing and reduces the significant costs for synchronization
and finalization. Both the multiple bounding rectangle and run-length encoding
exploits the sparsity of the image, and applying the multiple bounding rectangle
before run-length encoding is required for achieving high performance composit-
ing on high-speed network. By adding the above three techniques to the original
BS method, our method accelerates its performance as the number of processors
increases, and its speedup to the original reaches the maximum of 2.5.
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