
A Divided-Screenwise Hierarchical Compositing
for Sort-Last Parallel Volume Rendering

Fumihiko Ino1 Tomomitsu Sasaki2∗ Akira Takeuchi2 Kenichi Hagihara1

1 Graduate School of Information Science and Technology, Osaka University
2 Graduate School of Engineering Science, Osaka University

1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
E-mail: ino@ist.osaka-u.ac.jp

Abstract

In this work, to render at least 5123 voxel volumes in
real-time, we have developed a sort-last parallel volume
rendering method for distributed memory multiprocessors.
Our sort-last method consists of two methods, Hsu’s seg-
mented ray casting and our divided-screenwise hierarchi-
cal (DSH) compositing, in which each processor produces
a subimage and merges all the produced subimages into the
final image. This paper describes the DSH method, which
aims at achieving high performance compositing on a large
number of processors. Our implementation on a 64-node
PC cluster can composite a 5122 pixel image about twice
as fast as an existing method, the binary-swap method, so
that can render a 512x512x224 voxel volume at approxi-
mately eight frames per second (fps).

1. Introduction

Direct volume rendering [6, 21] is a useful technique
to visualize the internal parts of the patient’s body, which
are usually invisible. For example, visualizing the invisi-
ble parts helps medical doctors in diagnosing patients and
planning surgical strategies [3, 17]. To observe such invisi-
ble objects, X-ray computed tomography (CT) scans create
three-dimensional (3D) volumes by scanning the objects,
and volume rendering methods produce two-dimensional
(2D) images by mapping the volumes onto the screen, or
the image plane.

In general, medical diagnoses require both interactive
and high-resolution rendering: rendering of 5123 voxel vol-
umes at ten frames per second (fps). To achieve high-speed
rendering, we require sufficient computing resources such
as fast processors to perform the compute-intensive render-
ing and large memories to store the entire 3D volume.

One way to meet these requirements is to parallelize
serial volume rendering methods on distributed memory
multiprocessors. Many researchers have proposed parallel

∗Presently with Toyota Motor Corporation.

methods [2, 4, 7, 8, 12, 13, 16, 18, 20, 22, 23]. In particu-
lar, some recent works [12, 22] have challenged to real-time
rendering of at least 5123 voxel volumes.

The above previous methods are classified as sort-last
methods [11], which partition the volume into subvolumes
and distribute the subvolumes to each processor. The sort-
last method consists of two phases: (1) the rendering phase
and (2) the compositing phase. In the rendering phase, each
processor independently produces a subimage by rendering
its own assigned subvolume. Thus n-subimages have been
produced after the rendering phase, where n is the num-
ber of processors. In the subsequent compositing phase, the
processors produce the final image by merging n-subimages
in a back-to-front [21] or front-to-back [6] order.

The performance of the rendering phase can scale with
n, because every processor performs 1/n of the entire ren-
dering task and no communication occurs in this phase. For
example, segmented ray casting (SRC) [4], which exploits
data parallelism in ray casting (RC) [6], renders efficiently
on distributed memory multiprocessors.

On the other hand, the compositing task grows with n.
Furthermore, processors have to communicate each other to
produce the final image. Therefore, to develop an efficient
sort-last method that gives a linear speedup with n, we also
have to develop an efficient compositing method that pro-
vides high performance compositing on a large n.

In [8], Ma et al. have introduced four existing composit-
ing methods: binary tree (BT), binary swap (BS) [8], direct
send (DS) [4, 13], and projection (PJ) [2] methods.

The BT method, which completes the image composit-
ing with log n stages, is a simple method and suites to hard-
ware implementations [12]. At the first stage, all processors
are paired up, and one of a pair sends its own subimage to
the other. Half the processors that received a subimage com-
posite the subimage and proceed to the succeeding stage.
Repeating the above processes on all log n stages produces
the final image. Since the number of idle processors in-
creases at every stage, this method is inefficient for software
implementations.

Next, the BS method is an improvement on the BT
method. Each pair of processors splits its own subimage in
two pieces and exchanges one of the two pieces. At the k-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

th stage, every processor composites 1/2k of the subimage,
so that no processor becomes idle during the compositing
phase. The BS method completes the image compositing
with log n stages and transmits at most 2.43n1/3p pixels,
where p is the number of pixels in the final image. Many
sort-last methods [10, 16, 22, 23] use this method.

The DS method divides the screen into non-overlapping
regions and statically assigns each compositing region to a
processor. This method transmits approximately n1/3p (1−
1/n) pixels, the least among the four listed above. However,
it takes n− 1 stages at the worst case.

Last, the PJ method composites by propagating the
subimages through processors in a front-to-back order. On
average, this method transmits O(n1/3p) pixels and takes
O(n1/3) stages. The PJ method is behind the above meth-
ods in these performance metrics but completes the image
compositing sequentially from the processor located in the
front. This allows us to process different viewing angles at
the same time like the parallel pipeline method [5, 18].

In this work, to render high-resolution volumes in real-
time, we have developed a sort-last parallel volume ren-
dering method that provides high-speed rendering on dis-
tributed memory multiprocessors. Our method renders by
using Hsu’s SRC method and composites by using our
Divided-Screenwise Hierarchical (DSH) method.

Our DSH method focuses on keeping up high perfor-
mance with the increase of n. To achieve this, we adopt
three compositing policies. To reduce the number of trans-
mitted pixels, our method (1) divides the screen into non-
overlapping regions and composites each region as the DS
method does. Furthermore, to reduce the number of com-
positing stages, our method (2) dynamically assigns each
compositing region to the appropriate processors and (3)
composites each region in a hierarchical order. The order
is dynamically determined for every viewing angle accord-
ing to the expected number of transmitted pixels.

The rest of this paper is organized as follows. Section
2 describes an existing sort-last parallel volume rendering
method. Section 3 gives the details of our DSH method
and presents its theoretical performance analysis. Section 4
presents some experimental results on a 64-node PC cluster.
At last, Section 5 concludes this paper.

2. Sort-Last Parallel Volume Rendering

This section describes an existing sort-last parallel vol-
ume rendering method using the SRC and BS methods. We
also describe the RC method, the base of the SRC method.

2.1. Ray casting (RC)

The RC method [6] produces an image by casting rays
from the viewpoint through the screen into the viewing vol-
ume as illustrated in Figure 1(Ph0). Let Ss and St be the
horizontal and the vertical resolution of the screen, respec-
tively. Let rs,t also be the ray that penetrates point (s, t) on
the screen. A pixel value P (s, t), where both 1 ≤ s ≤ Ss

Volume: V Data distributing
 (n=64)

(Ph1) Ray collecting(Ph2) Local rendering

(Ph3) Image Compositing (binary-swap)

Viewpoint
(s,t)

Screen Ray : rs,t

v1

vN

Viewpoint

Screen

Viewpoint
(s,t)

Screen

V1

~

Ss

St

Subvolume: V64

~

Initial stage First stage Second stage

I 1

~

I 2

~

I 3

~

I 4

~

I

I1

~
I4

~

V1

~

V4

~

rs,t rs,t
v2 v3

V2

~

Subimages

Final image

v1
vN

Sx

Sy

Sz

(Ph0) Ray casting

Figure 1. Sort-last parallel volume render-
ing using segmented ray casting and binary-
swap methods.

and 1 ≤ t ≤ St, is computed by accumulating the colors
and opacities of the voxels that ray rs,t penetrates:

P (s, t) =
N∑

i=1

α(vi) c(vi)
i−1∏
j=0

(1 − α(vj)), (1)

where v1, v2, . . . , vN are the voxels that ray rs,t penetrates
in a front-to-back order; c(vi) and α(vi) are the color and
the opacity of voxel vi, respectively; and α(v0) = 0.

Computing the values of all pixels on the screen pro-
duces the final image, I .

2.2. Segmented ray casting (SRC)

The color and opacity accumulating represented as
Equation (1) is based on the associative over operator,
which allows us to segment a ray and accumulate the ray
segments independently. Thus the SRC method [4] exploits
data parallelism in the RC method via associativity of the
Porter and Duff’s over operator [15].

In the following we assume that the entire volume, V , is
partitioned into equal-sized 3D blocks, or subvolumes, and
subvolume Ṽq is distributed to processor q for all 1 ≤ q ≤
n. Figure 1 illustrates this block distribution scheme.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

In the SRC method, for all processors 1 ≤ q ≤ n, q pro-
duces a subimage, Ĩq, by casting rays through its own sub-
volume Ṽq, then merges n-subimages into the final image.
The SRC method consists of the following three phases:

Phase 1: Ray collecting (Figure 1(Ph1)). The penetrated
voxels, v1, v2, . . . , vN , specified in Equation (1) are
selected for every rays that penetrate the screen. This
is performed in two steps. First, for all processors
1 ≤ q ≤ n, to know which rays penetrate subvolume
Ṽq, q projects its own subvolume Ṽq onto the screen
and determines ray set Rq that consists of any rays
that traverse the subvolume Ṽq. Second, for all rays
rs,t ∈ Rq, penetrated voxels v1, v2, . . . , vN are deter-
mined by q. This phase requires only one communica-
tion, the broadcast of the viewpoint’s coordinate.

Phase 2: Local rendering (Figure 1(Ph2)). For all pro-
cessors 1 ≤ q ≤ n, q produces subimage Ĩq by ren-
dering its own subvolume Ṽq. That is, q computes a
part of Equation (1), the only terms that contain voxel
vi such that vi ∈ Ṽq. For example, as shown in Figure
1(Ph1), if processor 2 owns v3 and v4, then it com-
putes two terms, α(v3)c(v3) +α(v4)c(v4)(1−α(v3))
and (1 − α(v3))(1 − α(v4)). In this phase, all pro-
cessors refer only their local voxels, so that communi-
cation among processors is unnecessary to produce all
subimages.

Phase 3: Image compositing (Figure 1(Ph3)). After the
rendering phase, n-subimages have been produced.
The processors then merge the produced subimages,
Ĩ1, Ĩ2, · · · , Ĩn, into the final image, I , by applying all
computed terms into Equation (1) for every point on
the screen. To do this, communication is necessary in
this phase.

2.3. Binary-swap (BS) compositing

The BS method [8] is an efficient image compositing
method, which produces the final image in a hierarchical
order as shown in Figure 1(Ph3).

At every compositing stage, for all processors 1 ≤ q ≤
n, q splits its own subimage Ĩq into two pieces and takes re-
sponsibility for one of the two pieces. By assigning equal-
sized compositing tasks to all processors, the BS method
balances the compositing workloads that the BT method
fails.

At the k-th stage, where 1 ≤ k ≤ log n, the BS method
transmits 1/2 · 2−(k−1)/3n1/3p pixels among n-processors
[8]. Therefore, the average compositing time, tBS , can be
bounded as follows:

tBS =
log n∑
k=1

{
(g + tc)

1
2n

2−(k−1)/3n1/3p + o

}

≤ p (g + tc) · 2.43n−2/3 + o · log n, (2)

Bounding
rectangle

I4

~

I1
~ 3

I1
~ 1

I1
~ 4

I1
~ 2

I2
~ 1I3

~ 1
I4
~ 1

W = { 1, 3, 4 }2

Dividing lines

I3

~

I1

~I2

~

1W = { 3, 4 }

W = { 1, 2, 4 }4

W = { 4 }3

Figure 2. Divided-screenwise image com-
positing (n = 4 and D = 4).

where o is the communication overhead that a processor
takes for a transmission, and g and tc is the transmitting
time and the computing time per pixel, respectively.

Notice that only non-blank pixels affect the composited
results. Thus the BS method exploits the sparsity of subim-
age by using a bounding rectangle, which encloses the en-
tire non-blank region of the subimage. Every processor
composites and transmits within this bounding rectangle.

3. Divided-Screenwise Hierarchical (DSH)
Compositing

This section describes our DSH method in detail.

3.1. Compositing policies

The DSH method has three compositing policies:

Policy 1: To reduce the number of transmitted pixels
(see Figure 2). For all processors 1 ≤ q ≤ n, we
divide subimage Ĩq into D-regions and obtain divided-
subimages Ĩ1

q , Ĩ
2
q , . . . , Ĩ

D
q , where D is the number of

screen division. Then, for all regions 1 ≤ d ≤ D, we
composites d by merging Ĩd

1 , Ĩ
d
2 , . . . , Ĩ

d
n into one.

Policy 2: To reduce the number of communicating pro-
cessor pairs (see Figure 2). We shape each region
into a tile. In addition, for all regions 1 ≤ d ≤ D, we
dynamically determine a processor set, W d, that con-
sists of any processors that have the bounding rectan-
gle of divided-subimage Ĩd

q within d. Any processors
q ∈ W d merges region d for all 1 ≤ d ≤ D.

Policy 3: To reduce the number of compositing stages
(see Figure 4). For all regions 1 ≤ d ≤ D, we dynam-
ically determine a hierarchical compositing order, Od,
and concurrently composite d according to Od.

In the following we introduce why our DSH method
adopts the above three policies.

First, the BS method transmits more pixels than the DS
method, because it can composite two subimages that fail

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Initial
stage

3 4
2 1

O
d

6 4

1 4

I1
~ d

I2
~ d

I3
~ d

I4
~ d

I5
~ d

I6
~ d

W = { 1,2,3,4,6 }
d

d2

Stage

Region
D1

Bounding
rectangle

First
stage

Second
stage

Final
stage

Figure 4. Concurrent processing of hierarchi-
cal image compositing.

in overlapping non-blank pixels. For example, in Figure
1(Ph3), processors 3 and 4 composite two subimages Ĩ3
and Ĩ4 at the first stage. However, both the subimages lack
the common non-blank region, so that the processors fail in
merging non-blank pixels and the communication for this
exchange results in redundant. This redundant communica-
tion, which brings no fruitful compositing, happens at two
of three stages, because each subvolume locates on the 3D
grid [8]. Therefore, we adopt the policy 1. That is, to
eliminate such redundant communications, we divide the
screen into regions and composites each region like the DS
method, which transmits the fewest pixels among the four
methods introduced in Section 1.

Next, both the policies 2 and 3 are the ideas to solve the
performance problem of the DS method. In the DS method,
to ensure load-balancing, the screen is divided into small
regions and each region is statically assigned to a proces-
sor in a random or interleaved distribution. However, this
distribution scheme makes the communication pattern com-
plicated. At the worst case, each processor communicates
to every other processor, so that the number of compositing
stages increases up to n − 1. Therefore, we adopt the pol-
icy 2 for our method, which aims at achieving high perfor-
mance compositing with the increase of n. That is, to make
the communication pattern simple, (1) we divide the screen
into tile-shaped regions and (2) for all regions 1 ≤ d ≤ D,
we dynamically assign region d to processor set W d. No-
tice that processor set W d excludes any processors that lack
a non-blank pixels within d.

Furthermore, to reduce the number of compositing
stages, we composites each region in a hierarchical order
like the BT method. For all regions 1 ≤ d ≤ D, d is com-
posited in concurrent according to a hierarchical order, Od.
The algorithm to determine Od is described in Section 3.2.

To determine processor set W d, we have to examine the
coordinates of all distributed bounding rectangles. Since
these coordinates are fixed after the rendering phase, our
method requires a broadcasting at the beginning of the com-
positing phase. However, we require only the coordinates,
so that the communication cost for this preprocessing is rel-
atively low to the entire compositing cost, which contains
the communication cost for transmitting all pixels within
the bounding rectangles.

While only one processor merges the final image in the
BT method, at most D-processors merge the final image in
our method. Therefore, given an appropriate value for D,
our method avoids extremely low efficiency.

3.2. Algorithm to determine compositing order

To determine the set of compositing order, O =
{Od | 1 ≤ d ≤ D}, our algorithm requires four inputs: (1)
n, the number of processors; (2) D, the number of screen
division; (3) B = {B̃d

q | 1 ≤ q ≤ n, 1 ≤ d ≤ D} and

(4) Z = {B̃q | 1 ≤ q ≤ n}, the sets of bounding rect-
angles, where B̃d

q and B̃q are the bounding rectangles of

divided-subimage Ĩd
q and projected subvolume Ṽq, respec-

tively. Here, the coordinates of B̃q are obtained at the ray
collecting phase and broadcasted with those of B̃d

q at the
beginning of the compositing phase.

In our method, a processor, qs, that has a small bounding
rectangle B̃d

qs
sends B̃d

qs
to a processor, ql, that has a large

bounding rectangle B̃d
ql

. The receiver processor ql takes the

responsibility for the received B̃d
qs

(see Figure 4). When
pairing up processors qs and ql from processor set W d, we
take the receiver first (RF) scheme. That is, we select the
receiver ql prior to the sender qs. Indeed we can take the
sender first (SF) scheme but we take the RF scheme from
some experimental results shown later in Section 4.3.

Figure 3 presents the algorithm. First, for all regions
1 ≤ d ≤ D, processor set W d is determined by examining
if each processor has a bounding rectangle within d (line
12). Here, we reduce the search space by referring the co-
ordinates of B̃q (line 10–11).

We then select processor ql such that ql has the largest
bounding rectangle in processor set W d

stg (line 28). Here
W d

stg is a processor set initialized with W d and consists of
any processors that can be paired up with their front/back
neighbors at the current compositing stage. We also select
processor qs from W d

stg such that qs has a smaller bounding
rectangle between ql’s front/back neighbors (line 30).

If such processor qs ∈ W d
stg exists, we then add a com-

positing task that sends bounding rectangle B̃d
qs

to ql (line

33) and update the coordinates of bounding rectangle B̃d
ql

(line 34). Otherwise, since both front and back neighbors
of ql are engaged in other compositing task at this stage,
we leave the compositing of bounding rectangle B̃d

ql
at later

stages (line 38).
Repeating the above processes until W d

stg becomes an
empty set determines a compositing order for one stage (line
27–39). Moreover, repeating them until every processor q ∈
W d engages at least one compositing task determines Od,
or the compositing order for region d (line 25–40).

3.3. Theoretical performance analysis

This section presents a theoretical performance analy-
sis of our DSH method. We give the average composit-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Inputs: (1) n: Number of processors.
(2) D: Number of screen regions.
(3) B: Set of bounding rectangles of rendered images divided by regions, B ≡ {B̃d

q | 1 ≤ q ≤ n, 1 ≤ d ≤ D}.
(4) Z: Set of bounding rectangles of projected subvolume determined at phase (Ph1), Z ≡ {B̃q | 1 ≤ q ≤ n}.

Output: (1) O: Set of compositing order lists, O ≡ {Od, 1 ≤ d ≤ D}.
1: Algorithm DetermineHierComposOrder(n,D,B,Z,O); 22: /* Procedure to generate Od. */
2: begin 23: Procedure DetermineRegion(W d, d, B, Od);
3: O := ∅; /* Initialize O as an empty set. */ 24: begin
4: foreach d ∈ {1, 2, . . . , D} do begin 25: while (W d 	= ∅) do begin /* All stages */
5: W d := ∅; Od := ∅; 26: W d

stg := W d;
6: end 27: while (W d

stg 	= ∅) do begin /* One stage */
7: /* 1. Identify the processors that engage in 28: Select ql ∈ W d

stg such that
8: compositing of region d. */ 29: ∀q ∈ W d

stg (A(B̃d
q) ≤ A(B̃d

ql
));

9: foreach q ∈ {1, 2, . . . , n} do begin 30: Select qs ∈ W d
stg such that qs has lower

10: Dq := {d ∈ {1, 2, · · · , D} | d ∩ B̃q 	= ∅}; 31: A(B̃d
qs

) between ql’s front/back neighbors;
11: foreach d ∈ Dq do begin 32: if ∃qs ∈ W d

stg then begin
12: if (A(B̃d

q) 	= 0) then /* A(B̃d
q): Area of B̃d

q */ 33: Add a compositing task ‘qs → ql’ to Od;
13: W d := W d ∪ {q}; 34: B̃d

ql
:= B̃d

ql
∪ B̃d

qs
; /* Update coordinates */

14: end 35: Delete qs and ql from W d
stg ;

15: end 36: Delete qs from W d; /* qs completes */
16: /* 2. Determine each of compositing order. */ 37: end else
17: foreach d ∈ {1, 2, . . . , D} do begin 38: Delete ql from W d

stg ;
18: DetermineRegion(W d, d, B, Od); /* line24 */ 39: end
19: O := O ∪ {Od}; 40: end
20: end 41: end
21: end

Figure 3. Algorithm to determine a hierarchical compositing order.

Table 1. Summary of theoretical analysis. sDSH , cDSH , and tDSH represent number of compositing
stages, number of transmitted pixels per processor, and average compositing time, respectively.

sDSH ≤ D n−2/3�log3/2(c n1/3)	 (3)
cDSH = sDSH · (e p n−2/3/D) (4)
tDSH =

∑sDSH

k=1

{
(g + tc) · (e p n−2/3/D) + o

}
≤ p (g + tc) ·

{
e n−4/3 �log3/2(c n1/3)	

}
+ o ·

{
D n−2/3 �log3/2(c n1/3)	

}
(5)

n: Number of processors. p: Number of pixels in the final image. D: Number of screen division.
c: Proportionality constant for the number of nonblank pixels transmitted by a processor at a stage.
e: Proportionality constant for the number of processors engaged in a region.

ing time, tDSH , by analyzing the number of compositing
stages, sDSH , and the number of transmitted pixels per pro-
cessor, cDSH (see Table 1). To make this analysis simple,
we assume that (A1) the final image, I , is filled with non-
blank pixels. We also assume that (A2) each axis of the
screen and volume has the same resolution and that (A3)
D ≥ n2/3 (mentioned in later).

First, we analyze sDSH . Consider that any processors in
processor set W d are sorted in a front-to-back order. Since
only adjoining processors can be paired up, some proces-
sors can be isolated at each compositing stage. Therefore,
sDSH becomes worst when isolated processors exist be-
tween every pair of processors at every stage. In this worst
case, |W d| reduces by a factor of 2/3 at every stage, so that
region d takes �log3/2 |W d|	 stages. On the other hand, it
takes �log |W d|	 stages in the best case, where |W d| re-
duces in half at every stage like the BT method.

Furthermore, in a block data distribution shown in Figure
1, each processor has approximately p n−2/3 non-blank pix-

els at the initial compositing stage [13]. Since we assume
that (A1), this means that for all processors 1 ≤ q ≤ n,
n−2/3 of the entire pixels in subimage Ĩq are non-blank at
the initial compositing stage. Therefore, each processor has
non-blank pixels within D n−2/3 regions.

Thus our DSH method takes �log3/2 |W d|	 stages

for each of D n−2/3 regions. If we have to per-
form the concurrent compositing in serial, sDSH becomes
D n−2/3�log3/2 |W d|	. On the other hand, if we can
perform the compositing independently, sDSH becomes
max(D n−2/3, �log3/2 |W d|).

Next, we analyze cDSH . At each compositing stage, the
size of bounding rectangle B̃d

q is proportional to p n−2/3,
or the number of non-blank pixels at the initial composit-
ing stage. It also inversely proportional to D, or the num-
ber of screen division. Therefore, each processor trans-
mits e p n−2/3/D non-blank pixels at a compositing stage,
where e is the proportionality constant, so that we obtain

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16 32 64 128 256 512
n: Number of processors

N
um

be
r

of
 tr

an
sm

itt
ed

 p
ix

el
s

pe
r

pr
oc

es
so

r

BS: 2.43 n

DSH: c=1, e=1, e n log cn

DSH: c=2, e=1

DSH: c=3, e=1

DSH: c=2, e=2

DSH: c=2, e=3

3/2

-4/3 1/3

-2/3

.
BS

0

10

20

30

40

50

60

70

2 4 8 16 32 64 128 256 512
n: Number of processors

N
um

be
r

of
 c

om
po

si
tin

g
st

ag
es

BS: log n
DSH: D=n , c=1, D n log cn
DSH: D=n , c=2
DSH: D=n , c=3
DSH: D=n, c=1
DSH: D=n, c=2
DSH: D=n, c=3

BS

3/2

1/3.-2/32/3

2/3

2/3

(a) Number of transmitted pixels per processor (b) Number of compositing stages

Figure 5. Theoretical comparison between DSH and BS methods (D ≥ n2/3).

Equation (4) (see Table 1).
At last, using the above analysis, we give a bound for

tDSH . When we divide the screen into at least n2/3 regions,
we obtain |W d| ≤ c n1/3, where c is a proportionality con-
stant. To explain this in brief, we assume that the view-
point is selected so that we are looking straight down the
Z-axis. Then, since we assume that (A2), we are viewing
n2/3 divided-subimages on the screen. Each of the viewing
divided-subimage is overlapping n1/3 divided-subimages
along the Z-axis. Therefore, dividing the screen into at least
n2/3 regions, D ≥ n2/3, gives |W d| ≤ c n1/3.

Summarizing the above discussions, tDSH for D ≥ n2/3

is bounded by Equation (5).

3.4. Theoretical comparison between DSH and BS
methods

Using Equations (2) and (5), we give a theoretical com-
parison between the DSH method and the BS method. The
coefficients of the two terms, p (g + tc) and o, represent
the number of transmitted pixels per processor and that of
compositing stages, respectively. Figure 5 plots the values
of each term, for D = n2/3 and for D = n, with varying
the values of c and e.

Figure 5(a) indicates that both methods transmit fewer
pixels as n increases. But the DSH method decreases more
quickly than the BS method, and the performance gap be-
tween the two methods extends as n increases. Thus, with
the increase of n, the DSH method transmits fewer pixels
compared to the BS method.

Figure 5(b) indicates that both methods take more com-
positing stages as n increases. When D = n2/3, the
DSH method completes the image compositing with the
almost same number of compositing stages as the BS
method. On the other hand, when D = n, the efficiency
of concurrent compositing, or the dependence among com-
positing tasks, strongly affects the number of composit-
ing stages in the DSH method. If processors have to per-
form the concurrent compositing in serial, it takes more
stages than the BS method as shown in Figure 5(b). How-

ever, if processors perform the concurrent compositing in
fully parallel, the number of compositing stages become
max(n1/3, �log3/2(c n1/3)) as presented in Section 3.3.
In this best case, the DSH method takes the almost same
number of compositing stages as the BS method.

4. Experimental Results

In this section we present some experimental results on a
PC cluster using clinical volumes. We measured following
performance metrics:

• Compositing time (see Section 4.2). We measured the
compositing times of the DSH and BS methods with
varying the numbers of processors and screen division.

• Numbers of transmitted pixels per processor and com-
positing stages (see Section 4.3). We measured these
numbers of both methods. We also compared the RF
and SF schemes mentioned in Section 3.2.

4.1. Experimental environments

Figure 6 shows the rendered images from clinical vol-
umes used in our experiments. These volumes are created
by a X-ray CT and magnetic resonance (MR) scan.

We used a PC cluster with 64 symmetric multiprocessor
(SMP) nodes for our experiments. Each node in the clus-
ter has two Pentium III 1GHz processors and connects to
a Myrinet-2000 [1] switch, which provides sustained band-
width of 2 Gbps per link.

We have implemented our sort-last parallel volume ren-
dering method and also the BS method using C++ language
and MPICH-SCore library [14], which is a fast implemen-
tation of Message Passing Interface (MPI) [9].

To achieve high performance rendering on SMP nodes,
our implementation uses the POSIX thread in the render-
ing phase. However, to make the implementation portable,
we currently avoid using the POSIX thread in the composit-
ing phase. Few MPI implementations [19] are thread safe at

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

(c) VD3: Skull (512x512x224, CT) (d) VD4: Belly (512x512x730, CT)(a) VD1: Breast (512x512x159, CT) (b) VD2: Brain (512x512x218, MR)

Figure 6. Rendered images from clinical volumes used in experiments.

present, because thread safe mechanism can reduce commu-
nication performance. So the number of compositing pro-
cessors in our current implementation is equal to the number
of nodes. In the following let n be the number of nodes, or
the number of compositing processors.

4.2. Compositing time

Using the four volumes shown in Figure 6, we measured
the compositing time of the DSH method and that of the BS
method, TDSH and TBS , respectively.

We rotated the viewpoint 360 degrees around the body
axis, or Z-axis, by 15 degrees. We then measured 24 com-
positing times and averaged them for each TDSH and TBS .
The screen was 5122 pixel large and divided into D-regions:√
D regions for horizontal and vertical direction, respec-

tively. Moreover, when we failed to assign the same num-
ber of nodes for each three volume axis, we averaged the
measured times of all cases such that every axis has at most
double nodes compared to the other two axis.

Figure 7 shows the measured results. In many cases we
obtain TDSH < TBS except for n = 2. Therefore, given
an appropriate value for D, the DSH method outperforms
the BS method on our PC cluster. For example, when both
n = 64 and D = 64, the maximum speedup of DSH to BS
ranges from 1.4 for V D3 to 2.2 for V D1.

In the following we describe how we can determine such
an appropriate value, Dm, for any given n. In Figure 7,
when increasing the value of D at any fixed value of n,
TDSH reaches the maximum at D = 1, decreases until
D = Dm, and then turns to increase. Furthermore, we also
see that Dm ≥ n for all n. Therefore, by increasing the
value of D from given n, we can easily identify when TDSH

turns to increase and thereby can determine Dm by select-
ing the value of D that gives the last decrease of TDSH .

Table 2 lists three performance results when D = Dm:
(1) the ratio of compositing time to the total rendering time,
rDSH = 100 × TDSH/T and rBS , where T is the total
rendering time; (2) frames per second, fDSH = 1/T and
fBS ; (3) speedup ratio, sf = 100 × (fBS − fDSH)/fBS .

In Table 2, rDSH and rBS increase with n and reach
the maximum of 22.2% and 16.8%, respectively. Thus, as
the number of processors increases, the compositing per-
formance dominates the total rendering performance. As

mentioned earlier, this result motivates us to develop an ef-
ficient compositing method that provides high performance
compositing with the increase of n.

Moreover, in all cases except for n = 2, we see that
fDSH > fBS . We also see that sf increases with n. That
is, with the increase of n, the DSH method becomes faster
than the BS method and contributes to the improvement of
the total rendering performance. On 64 nodes, the DSH
method renders V D1 and V D3 at 10.4 and 8.3 fps, yielding
parallel speedups of 25.1 and 28.2, respectively.

4.3. Numbers of transmitted pixels per processor
and compositing stages

By rendering the four volumes in the same way as men-
tioned in Section 4.2, we measured the numbers of transmit-
ted pixels per processor in the DSH method and in the BS
method, CDSH and CBS , respectively. For each viewpoint,
we measured the maximum number among all nodes, and
then averaged the measured numbers.

Figure 8 shows both CDSH and CBS . We see that the
gap between CDSH and CBS extends as n increases. For
example, the minimum value of CDSH/CBS in Figure 8(d)
is 0.87 for n = 2 and decreases to 0.22 for n = 64. This
decrease roughly agrees with the theoretical results shown
in Figure 5(a).

Furthermore, where n ≥ 8, CDSH monotonously de-
creases as D increases. The reason for this is explained
as follows. Dividing the screen into small regions prevents
the bounding rectangles from extremely growing at each
compositing stage. For example, in Figure 4, two subim-
ages Ĩd

3 and Ĩd
4 are composited, and each of the two has

a bounding rectangle in the left-top/right-bottom part of re-
gion d. Therefore, after this compositing, the bounding rect-
angle of Ĩd

4 grows to the same size as the entire region d.
Since the same bounding rectangle may repeatedly trans-
mitted in hierarchical compositing methods, this extremely
grown bounding rectangle can increase the number of trans-
mitted pixels at the following stage. Thus, as D increases,
the grown bounding rectangles are left smaller, and thereby
CDSH monotonously decreases with the increase of D.

Table 3 shows SDSH and SBS , the numbers of composit-
ing stages in the DSH method and in the BS method, respec-
tively. For the DSH method, we show both the numbers for
the RF and the SF schemes.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

10

20

30

40

50

60

70

80

90

2 4 8 16 32 64
n: Number of processors

C
om

po
si

tin
g

tim
e

(m
se

c)

TBS

TDSH (D=1)
TDSH (D=4)
TDSH (D=16)
TDSH (D=64)
TDSH (D=256)

0

10

20

30

40

50

60

70

2 4 8 16 32 64
n: Number of processors

C
om

po
si

tin
g

tim
e

(m
se

c)

TBS

TDSH (D=1)
TDSH (D=4)
TDSH (D=16)
TDSH (D=64)
TDSH (D=256)

0

10

20

30

40

50

60

70

2 4 8 16 32 64
n: Number of processors

C
om

po
si

tin
g

tim
e

(m
se

c)
TBS

TDSH (D=1)
TDSH (D=4)
TDSH (D=16)
TDSH (D=64)
TDSH (D=256)

(a) VD1: Breast (512x512x159, CT) (b) VD2: Brain (512x512x218, MR)

(c) VD3: Skull (512x512x224, CT) (d) VD4: Belly (512x512x730, CT)

0

20

40

60

80

100

120

140

160

180

2 4 8 16 32
n: Number of processors

C
om

po
si

tin
g

tim
e

(m
se

c)

TBS

TDSH (D=1)
TDSH (D=4)
TDSH (D=16)
TDSH (D=64)
TDSH (D=256)

Dm=4 Dm=4 Dm=64Dm=64Dm=64Dm=64 Dm=4 Dm=4 Dm=64Dm=64Dm=64Dm=64

Dm=16 Dm=16 Dm=64Dm=64Dm=64Dm=16Dm=4 Dm=64 Dm=64Dm=64Dm=64Dm=64

64

Figure 7. Compositing times of DSH and BS methods. Fastest results are obtained where D = Dm.

In Table 3, SBS is exactly log n for any given volumes.
On the other hand, SDSH depends on both the viewing vol-
ume and the value of D. That is, as mentioned in Section
3.4, the efficiency of concurrent compositing determines the
value of SDSH . When increasing the value of D at the fixed
value of n, while SDSH slightly increases where D ≤ n, it
increases at least twice where D > n. Therefore, if we di-
vide the screen into at least n-regions, the number of com-
positing stages rapidly increases. When the value of D is
extremely large for n, the performance of image composit-
ing decreases as we see in Figure 7 where D = 256.

Although the DSH method shows better performance
than the BS method, we obtain SDSH ≥ SBS for all n. No-
tice here that the processing time per compositing stage dif-
fers between the DSH and BS methods. In the DSH method,
SDSH increases with D, but each divided region becomes
smaller. Thus each compositing task shrinks as D increases,
and this brings better performance to the DSH method.

At last, we compare the RF and the SF schemes. From
Table 3 we think that both methods are equal in the number
of compositing stage. We then compared these two methods
on the number of transmitted pixels, and the RF method
transmits pixels fewer an average of 4% compared to the SF
scheme. Thus we use the RF scheme in our DSH method.

The reduction of 4% is achieved as follows. In the SF
scheme, since receiver processor ql are determined from
the neighbors of sender processor qs, receiver processor ql

can fail to have a large bounding rectangle at each com-

positing stage. On the other hand, the RF scheme selects
receiver processor ql sequentially from a processor with a
larger bounding rectangle. Therefore, compared to the SF
scheme, the RF scheme allows fewer bounding rectangles
to grow. Thus the RF scheme dropped the number of trans-
mitted pixels by 4%.

5. Conclusions

We have presented a novel compositing method, the
DSH method, for sort-last parallel volume rendering on
distributed memory multiprocessors. Our method aims at
achieving high performance compositing on a large number
of processors. To achieve this, the DSH method divides the
screen to tile-shaped regions and composites them in con-
current according to a dynamically determined hierarchical
order. As the number of screen division increases, we obtain
fewer communications with a longer compositing stage.

Our implementation on a 64-node PC cluster can com-
posite a 5122 pixel image at most 2.2 times faster than the
BS method, so that can render a 512x512x224 voxel volume
at approximately eight fps.

Acknowledgements

This work was partly supported by JSPS Grant-in-Aid
for Scientific Research (C)(2)14580374, JSPS Research for

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 2. Compositing time ratio to total rendering time and frames per second.
V D1: Breast (512x512x159) V D2: Brain (512x512x218)

Comp. time Frames per Speedup Comp. time Frames per Speedup
n ratio (%) sec. (fps) ratio (%) n ratio (%) sec. (fps) ratio (%)

rBS rDSH fBS fDSH sf rBS rDSH fBS fDSH sf

2 1.2 1.2 0.89 0.89 –0.0 2 0.7 0.8 0.35 0.35 –0.1
4 2.6 1.7 1.43 1.44 0.9 4 1.7 1.2 0.64 0.65 0.5
8 5.0 2.3 2.40 2.47 2.8 8 3.8 1.9 1.23 1.25 2.0
16 8.9 5.3 4.21 4.38 4.0 16 6.1 3.1 1.89 1.95 3.2
32 13.3 9.6 6.46 6.74 4.3 32 9.9 5.0 3.10 3.27 5.4
64 22.2 16.8 9.73 10.41 7.0 64 15.9 8.3 4.73 5.15 9.1

V D3: Skull (512x512x224) V D4: Belly (512x512x730)
Comp. time Frames per Speedup Comp. time Frames per Speedup

n ratio (%) sec. (fps) ratio (%) n ratio (%) sec. (fps) ratio (%)
rBS rDSH fBS fDSH sf rBS rDSH fBS fDSH sf

2 3.0 2.0 1.65 1.67 1.0 2 1.4 0.9 0.29 0.29 0.5
4 5.4 3.3 2.28 2.34 2.3 4 2.9 1.4 0.47 0.48 1.5
8 11.2 5.2 4.11 4.38 6.7 8 4.5 2.6 0.72 0.74 1.9
16 14.9 7.6 5.24 5.68 8.5 16 6.6 4.1 1.16 1.19 2.7
32 18.3 10.0 6.48 7.13 10.1 32 9.4 6.0 1.86 1.93 3.8
64 21.1 11.0 7.39 8.34 12.8 64 14.4 9.1 3.00 3.19 6.1

Table 3. Number of compositing stages in DSH and BS methods.
V D1: Breast (512x512x159) V D2: Brain (512x512x218)

SDSH SDSH
n SBS D = 1 D = 4 D = 16 D = 64 D = 256 n SBS D = 1 D = 4 D = 16 D = 64 D = 256

RF SF RF SF RF SF RF SF RF SF RF SF RF SF RF SF RF SF RF SF
2 1 1 1 3 4 7 8 29 29 79 81 2 1 1 1 4 4 8 8 32 32 128 128
4 2 2 2 4 4 8 8 23 23 58 58 4 2 2 2 4 4 8 8 24 24 83 84
8 3 3 3 4 4 7 8 20 18 48 42 8 3 3 3 4 4 8 8 21 21 70 60
16 4 4 4 5 5 7 7 15 14 37 35 16 4 4 4 5 5 8 8 19 18 56 50
32 5 5 5 6 6 6 6 12 11 29 28 32 5 5 5 6 6 7 8 13 13 39 36
64 6 6 6 7 6 6 7 8 8 21 20 64 6 6 6 6 6 6 6 10 10 27 27

V D3: Skull (512x512x224) V D4: Belly (512x512x730)
SDSH SDSH

n SBS D = 1 D = 4 D = 16 D = 64 D = 256 n SBS D = 1 D = 4 D = 16 D = 64 D = 256
RF SF RF SF RF SF RF SF RF SF RF SF RF SF RF SF RF SF RF SF

2 1 1 1 3 3 6 6 19 22 74 81 2 1 1 1 4 4 9 13 41 55 219 233
4 2 2 2 4 4 7 7 18 18 58 55 4 2 2 2 4 4 8 11 28 40 148 141
8 3 3 3 4 4 8 8 17 17 41 44 8 3 3 3 4 4 12 11 35 30 120 105
16 4 4 4 6 5 7 7 14 14 28 28 16 4 4 4 5 5 11 10 27 25 91 84
32 5 5 5 6 6 6 6 11 11 28 28 32 5 5 5 6 6 9 9 21 20 67 66
64 6 6 6 7 7 7 6 8 8 18 18 64 6 6 6 7 6 9 9 16 16 49 49

Underlined numbers are the numbers of compositing stages when D = Dm.

the Future Program JSPS-RFTF99I00903, and the Founda-
tion for C&C Promotion. We would like to thank Masaki
Miyamoto at Medical Imaging Laboratory Co., Ltd., Yoshi-
nobu Sato and Shinichi Tamura at Osaka University for use-
ful discussions regarding this work. We are also grateful to
the anonymous reviewers for their valuable comments.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local-Area Network. IEEE Micro,
15(1):29–36, Feb. 1995. http://www.myri.com/.

[2] E. Camahort and I. Chakravarty. Integrating Volume Data
Analysis and Rendering on Distributed Memory Architec-
tures. In Proc. 1993 Parallel Rendering Symp. (PRS’93),
pages 89–96, Oct. 1993.

[3] P. Hatreiter, C. Rezk-Salama, K. Eberhardt, B. Tomandl, and
T. Ertl. Functional Analysis of the Vertebral Column Based

on MR and Direct Volume Rendering. In Proc. 3rd Int’l
Conf. on Medical Image Computing and Computer-Assisted
Intervention (MICCAI’00), pages 412–421, Oct. 2000.

[4] W. M. Hsu. Segmented Ray Casting for Data Parallel Vol-
ume Rendering. In Proc. 1993 Parallel Rendering Symp.
(PRS’93), pages 7–14, Oct. 1993.

[5] T.-Y. Lee, C. Raghavendra, and J. B. Nicholas. Image Com-
position Schemes for Sort-Last Polygon Rendering on 2D
Mesh Multicomputers. IEEE Trans. on Visualization and
Computer Graphics, 2(3):202–217, Sept. 1996.

[6] M. Levoy. Display of Surfaces from Volume Data. IEEE
Computer Graphics and Applications, 8(3):29–37, May
1988.

[7] C.-F. Lin, D.-L. Yang, and Y.-C. Chung. A Rotate-Tiling
Image Composition Method for Parallel Volume Rendering
on Distributed Memory Multicomputers. In Proc. 16th Int’l
Parallel and Distributed Processing Symp. (IPDPS2002),
Apr. 2002.

[8] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh.
Parallel Volume Rendering Using Binary-Swap Composit-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

100

200

300

400

500

600

700

2 4 8 16 32 64
n: Number of processors

N
um

be
r

of
 tr

as
m

itt
ed

 p
ix

el
s

pe
r

pr
oc

es
so

r
(K

B
)

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 64
n: Number of processors

N
um

be
r

of
 tr

as
m

itt
ed

 p
ix

el
s

pe
r

pr
oc

es
so

r
(K

B
)

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16 32 64
n: Number of processors

N
um

be
r

of
 tr

as
m

itt
ed

 p
ix

el
s

pe
r

pr
oc

es
so

r
(K

B
)

0

100

200

300

400

500

600

700

800

900

2 4 8 16 32
n: Number of processors

N
um

be
r

of
 tr

as
m

itt
ed

 p
ix

el
s

pe
r

pr
oc

es
so

r
(K

B
)

(a) VD1: Breast (512x512x159, CT) (b) VD2: Brain (512x512x218, MR)

(c) VD3: Skull (512x512x224, CT) (d) VD4: Belly (512x512x730, CT)

Dm=16

Dm=16

Dm=64

Dm=64

Dm=64Dm=16

Dm=4

Dm=4

Dm=64Dm=64

Dm=64Dm=64

Dm=4 Dm=4

Dm=64

Dm=64

Dm=64Dm=64

Dm=4

Dm=64

Dm=64

Dm=64Dm=64

Dm=64

CBS

CDSH (D=1)
CDSH (D=4)
CDSH (D=16)
CDSH (D=64)
CDSH (D=256)

CBS

CDSH (D=1)
CDSH (D=4)
CDSH (D=16)
CDSH (D=64)
CDSH (D=256)

CBS

CDSH (D=1)
CDSH (D=4)
CDSH (D=16)
CDSH (D=64)
CDSH (D=256)

CBS

CDSH (D=1)
CDSH (D=4)
CDSH (D=16)
CDSH (D=64)
CDSH (D=256)

64

Figure 8. Number of transmitted pixels per processor in DSH and BS methods.

ing. IEEE Computer Graphics and Applications, 14(4):59–
68, July 1994.

[9] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Int’l J. of Supercomputing Applications,
8(3/4), 1994.

[10] T. Mitra and T. Chiueh. Implementation and Evaluation of
the Parallel Mesa Library. In Proc. 1998 Int’l Conf. on Par-
allel and Distributed Systems (ICPADS’98), pages 84–91,
Dec. 1998.

[11] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sort-
ing Classification of Parallel Rendering. IEEE Computer
Graphics and Applications, 14(4):23–32, July 1994.

[12] S. Muraki, M. Ogata, K.-L. Ma, K. Koshizuka, K. Kajihara,
X. Liu, Y. Nagano, and K. Shimokawa. Next-Generation Vi-
sual Supercomputing using PC Clusters with Volume Graph-
ics Hardware Devices. In Proc. High Performance Network-
ing and Computing Conf. (SC2001), Nov. 2001.

[13] U. Neumann. Parallel Volume-Rendering Algorithm Per-
formance on Mesh-Connected Multicomputers. In Proc.
1993 Parallel Rendering Symp. (PRS’93), pages 97–104,
Oct. 1993.

[14] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa. The De-
sign and Implementation of Zero Copy MPI Using Com-
modity Hardware with a High Performance Network. In
Proc. ACM Int’l Conf. on Supercomputing (ICS’98), pages
243–250, July 1998. http://www.pccluster.org/.

[15] T. Porter and T. Duff. Compositing Digital Images. Com-
puter Graphics (Proc. SIGGRAPH’84), 18(3):253–259, July
1984.

[16] K. Sano, H. Kitajima, H. Kobayashi, and T. Nakamura. Par-
allel Processing of the Shear-Warp Factorization with the
Binary-Swap Method on a Distributed-Memory Multipro-
cessor System. In Proc. 1997 Parallel Rendering Symp.
(PRS’97), pages 87–94, Oct. 1997.

[17] R. Shahidi, B. Wang, M. Epitaux, R. Grzeszczuk, and
J. Adler. Volumetric Image Guidance via a Stereotactic En-
doscope. In Proc. 1st Int’l Conf. on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI’98),
pages 241–252, Oct. 1998.

[18] C. T. Silva, A. E. Kaufman, and C. Pavlakos. PVR: High-
Performance Volume Rendering. IEEE Computational Sci-
ence and Engineering Winter 1996, 3(4):18–28, 1996.

[19] H. Tang and T. Yang. Optimizing Threaded MPI Execution
on SMP Clusters. In Proc. 15th ACM Int’l Conf. on Super-
computing (ICS’01), pages 381–392, June 2001.

[20] R. Westermann. Parallel Volume Rendering. In Proc. 9th
Int’l Parallel Processing Symp. (IPPS’95), pages 693–699,
Apr. 1995.

[21] L. Westover. Footprint Evaluation for Volume Rendering.
Computer Graphics (Proc. SIGGRAPH’90), 24(4):367–376,
Aug. 1990.

[22] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland. Scalable
Rendering on PC Clusters. IEEE Computer Graphics and
Applications, 21(4):62–70, July 2001.

[23] D.-L. Yang, J.-C. Yu, and Y.-C. Chung. Efficient Com-
positing Methods for the Sort-Last-Sparse Parallel Volume
Rendering System on Distributed Memory Multicomputers.
In Proc. 1999 Int’l Conf. on Parallel Processing (ICPP’99),
pages 200–207, Sept. 1999.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	IPDPS 2003
	Return to Main Menu

